By using a new saturable absorber V 3+ :YAG, a flashlamp-pumped passively Q-switched Nd:GdVO 4 laser at 1.34 µm has been realized. Both a-cut and c-cut Nd:GdVO4 crystals are used. The output single-pulse energy and the pulse width versus the pump energy for different initial transmissions of V 3+ :YAG saturable absorbers are measured. The experimental results show that, c-cut Nd:GdVO4 laser can generate the shorter pulse width and higher energy in comparison to a-cut one.
In this paper, we demonstrate the efficient 1.3 um dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser. With a plano-concave cavity, a maximum continuous-wave dual-wavelength output power of 5.92 W is obtained under an incident pump power of 20.5 W, giving a slope efficiency of 30.3% and an optical-optical conversion efficiency of 29.0%. With Co(2+):LaMgAl(11)O(19) crystal as the saturable absorber, the passively Q-switched dual-wavelength operation is achieved for the first time to our knowledge. The maximum passively Q-switched average output power is 226 mW, the minimum pulse width is 15 ns, and the highest pulse repetition rate is 133 kHz.
A Ho:YAG ceramic microchip laser pumped by a Tm fiber laser at 1910 nm is passively Q-switched by single- and multi-layer graphene, single-walled carbon nanotubes (SWCNTs), and Cr2+:ZnSe saturable absorbers (SAs). Employing SWCNTs, this laser generated an average power of 810 mW at 2090 nm with a slope efficiency of 68% and continuous wave to Q-switching conversion efficiency of 70%. The shortest pulse duration was 85 ns at a repetition rate of 165 kHz, and the pulse energy reached 4.9 μJ. The laser performance and pulse stability were superior compared to graphene SAs even for a different number of graphene layers (n=1 to 4). A model for the description of the Ho:YAG laser Q-switched by carbon nanostructures is presented. This modeling allowed us to estimate the saturation intensity for multi-layered graphene and SWCNT SAs to be 1.2±0.2 and 7±1 MW/cm2, respectively. When using Cr2+:ZnSe, the Ho:YAG microchip laser generated 11 ns/25 μJ pulses at a repetition rate of 14.8 kHz.
A passively Q-switched ytterbium doped fiber laser has been demonstrated with a Cr(4+):yttrium aluminum garnet saturable absorber and distributed stimulated Brillouin scattering. A linearly polarized output with approximately 375 kW peak power and a pulse duration as short as 490 ps have been obtained. A theoretical model is developed to simulate passive Q switching with the stimulated Brillouin scattering, which shows good agreement with the experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.