Abstract. In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 89.3 ± 85.6 μg m−3, and it peaked at 423 μg m−3. Positive matrix factorization (PMF) differentiated the organic aerosol into five components, including a highly oxidized, low-volatility oxygenated organic aerosol (LV-OOA), a less oxidized, semi-volatile oxygenated OA (SV-OOA), a coal combustion OA (CCOA), a cooking-related OA (COA), and a hydrocarbon-like OA (HOA), which on average accounted for 28%, 26%, 15%, 20% and 11% of the total organic mass, respectively. A detailed comparison between the polluted days and unpolluted days found many interesting results. First, the organic fraction was the most important NR-PM1 species during the unpolluted days (58%), while inorganic species were dominant on polluted days (59%). The OA composition also experienced a significant change; it was dominated by primary OA (POA), including COA, HOA and CCOA, on unpolluted days. The contribution of secondary OA (SOA) increased from 35% to 63% between unpolluted and polluted days. Second, meteorological effects played an important role in the heavy pollution in this month and differed significantly between the two types of days. The temperature and relative humidity (RH) were all increased on polluted days and the wind speed and air pressure were decreased. Third, the diurnal variation trend in NR-PM1 species and OA components showed some differences between the two types of days, and the OA was more highly oxidized on polluted days. Fourth, the effects of air masses were significantly different between the two types of days; air was mainly transported from contaminated areas on the polluted days. The comparison also found that the aerosol was more acidic on polluted days. Additionally, the variation trends of the mass concentration and mass fractions of NR-PM1 species and OA components were more dramatic when the NR-PM1 mass loading was at a higher level. The serious pollution observed in this month can be attributed to the synergy of unfavorable meteorological factors, the transport of air masses from high-pollution areas, emission by local sources, and other factors.
Abstract. The evolution of physical, chemical and optical properties of urban aerosol particles was characterized during an extreme haze episode in Beijing, PRC, from 24 through 31 January 2013 based on in situ measurements. The average mass concentrations of PM1, PM2.5 and PM10 were 99 ± 67 μg m−3 (average ± SD), 188 ± 128 μg m−3 and 265 ± 157 μg m−3, respectively. A significant increase in PM1-2.5 fraction was observed during the most heavily polluted period. The average scattering coefficient at 550 nm was 877 ± 624 Mm−1. An increasing relative amount of coarse particles can be deduced from the variations of backscattering ratios, asymmetry parameter and scattering Ångström exponent. Particle number-size distributions between 14 and 2500 nm diameter showed high number concentrations, particularly in the nucleation mode and accumulation mode. Size-resolved chemical composition of submicron aerosol from a high-resolution time-of-flight aerosol mass spectrometer showed that the mass concentrations of organic, sulfate, nitrate, ammonium and chlorine mainly resided on particles between 500 and 800 nm (vacuum diameter), and nitrate and ammonium contributed greatly to particle growth during the heavily polluted day (28 January). Increasing relative humidity and stable synoptic conditions on 28 January combined with heavy pollution on 28 January, leading to enhanced water uptake by the hygroscopic submicron particles and formation of secondary aerosol, which might be the main reasons for the severity of the haze episode. Light-scattering apportionment showed that organic, sulfate, ammonium nitrate and ammonium chloride compounds contributed to light-scattering fractions of 54, 24, 12 and 10%, respectively. This study indicated that the organic component in submicron aerosol played an important role in visibility degradation during the haze episode in Beijing.
Abstract. The ozone weekend effect (OWE) was first investigated in the metropolitan area of Beijing-Tianjin-Hebei (BTH), China, using in situ measurements from the Atmospheric Environment Monitoring Network from July 2009 to August 2011. The results indicate that there is an obvious weekly periodical variation in the surface ozone concentration. There is a lower ozone concentration from Wednesday to Friday (weekday) and a higher concentration from Saturday to Monday (weekend) at all the locations of the study. NO x also displays a weekly cycle, with the maximum level occurring on weekdays and the minimum level on weekends, especially later on Sunday night and early Monday morning. This pattern may be responsible for the higher concentration of ozone on weekends. Additionally, the vertical variations in O 3 and NO x from the 8 m, 47 m, 120 m and 280 m observation platforms on the 325 m Beijing meteorological tower displayed obvious weekly cycles that corresponded to the surface results.A smaller decrease in volatile organic compounds (VOCs; using CO as a proxy) and much lower NO x concentrations on the weekend may lead to higher VOC / NO x ratio, which can enhance the ozone production efficiency in VOC-limited regime areas. Additionally, a clear weekly cycle in the fine aerosol concentration was observed, with maximum values occurring on weekdays and minimum values occurring on weekends. Higher concentrations of aerosol on weekdays can reduce the UV radiation flux by scattering or absorbing, which leads to a decrease in the ozone production efficiency. A significant weekly cycle in UV radiation, consistent with the aerosol concentration, was discovered at the Beijing meteorological tower site (BJT), validating the assumption. A comprehensive understanding of the ozone weekend effect in the BTH area can provide deep insights into controlling photochemical pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.