A genome scan was performed to detect chromosomal regions that affect egg production traits in reciprocal crosses between two genetically and phenotypically extreme chicken lines: the partially inbred line New Hampshire (NHI) and the inbred line White Leghorn (WL77). The NHI line had been selected for high growth and WL77 for low egg weight before inbreeding. The result showed a highly significant region on chromosome 4 with multiple QTL for egg production traits between 19.2 and 82.1 Mb. This QTL region explained 4.3 and 16.1% of the phenotypic variance for number of eggs and egg weight in the F(2) population, respectively. The egg weight QTL effects are dependent on the direction of the cross. In addition, genome-wide suggestive QTL for egg weight were found on chromosomes 1, 5, and 9, and for number of eggs on chromosomes 5 and 7. A genome-wide significant QTL affecting age at first egg was mapped on chromosome 1. The difference between the parental lines and the highly significant QTL effects on chromosome 4 will further support fine mapping and candidate gene identification for egg production traits in chicken.
Reciprocal crosses between the inbred lines New Hampshire (NHI) and White Leghorn (WL77) comprising 579 F2 individuals were used to map QTL for body weight and composition. Here, we examine the growth performance until 20 weeks of age. Linkage analysis provided evidence for highly significant QTL on GGA1, 2, 4, 10 and 27 which had specific effects on early or late growth. The highest QTL effects, accounting for 4.6-25.6% of the phenotypic F2 variance, were found on the distal region of GGA4 between 142 and 170 cM (F ≥ 13.68). The NHI QTL allele increased body mass by 141.86 g at 20 weeks. Using body weight as a covariate in the analysis of body composition traits provided evidence for genes in the GGA4 QTL region affecting fat mass independently of body mass. The QTL effect size differed between sexes and depended on the direction of cross. TBC1D1, CCKAR and PPARGC1A are functional candidate genes in the QTL peak region. Our study confirmed the importance of the distal GGA4 region for chicken growth performance. The strong effect of the GGA4 QTL makes fine mapping and gene discovery feasible.
In order to identify genetic factors influencing muscle weight and carcass composition in chicken, a linkage analysis was performed with 278 F(2) males of reciprocal crosses between the extremely different inbred lines New Hampshire (NHI) and White Leghorn (WL77). The NHI line had been selected for high meat yield and the WL77 for low egg weight before inbreeding. Highly significant quantitative trait loci (QTL) controlling body weight and the weights of carcass, breast muscle, drumsticks-thighs and wings were identified on GGA4 between 151.5 and 160.5 cM and on GGA27 between 4 and 52 cM. These genomic regions explained 13.7-40.2% and 5.3-13.8% of the phenotypic F(2) variances of the corresponding traits respectively. Additional genome-wide highly significant QTL for the weight of drumsticks-thighs were mapped on GGA1, 5 and 7. Moreover, significant QTL controlling body weight were found on GGA2 and 11. The data obtained in this study can be used for increasing the mapping resolution and subsequent gene targeting on GGA4 and 27 by combining data with other crosses where the same QTL were found.
This study aimed to analyse the genetic diversity and population structure of five Ethiopian chicken ecotypes (N = 155), which were compared with six commercial purebreds (N = 180). For the analysis of genetic diversity, 26 AVIANDIV microsatellite markers were used. The number of alleles in Ethiopian ecotypes ranged from 2 to 19 per locus, with a mean of 6.1. The average observed heterozygosity within ecotype varied between 0.53 and 0.57. The overall heterozygote deficiency (F(IT)) in Ethiopian ecotypes was 0.124 ± 0.037. Over 68% of F(IT) was because of within-ecotype deficiency (F(IS)). In the phylogenetic tree, Ethiopian ecotypes clustered into two groups. The analysis of the relationship between populations using the structure program provided further evidence for the occurrence of at least two subgroups in the Ethiopian ecotypes. Findings of this study may provide the background for future studies to identify the origin of the two gene pools representing the Ethiopian chicken ecotypes and to characterize the gene variants influencing economically important traits.
In this study, a genome scan was performed to detect genomic loci that affect fat deposition in white adipose tissues and muscles in 278 F (2) males of reciprocal crosses between the genetically and phenotypically extreme inbred chicken lines New Hampshire (NHI) and White Leghorn (WL77). Genome-wide highly significant quantitative trait loci (QTL) influencing fat deposition in white adipose tissues were found on GGA2 and 4. The peak QTL positions for different visceral and subcutaneous white adipose tissues were located between 41.4 and 112.4 Mb on GGA2 and between 76.2 and 78.7 Mb on GGA4, which explained 4.2-10.4% and 4.3-11.6% respectively of the phenotypic F (2) variances. Contrary to our expectations, the QTL allele descending from the lean line WL77 on GGA4 led to increased fat deposition. We suggest a transgressive action of the obesity allele only if it is not in the genetic background of the line WL77. Additional highly significant loci for subcutaneous adipose tissue mass were identified on GGA12 and 15. For intramuscular fat content, a suggestive QTL was located on GGA14. The analysed crosses provide a valuable resource for further fine mapping of fatness genes and subsequent gene discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.