Measurements of body conformation in sheep are of value in judging the quantitative characteristics of meat and also helpful in developing suitable selection criterion. Data on 349 Harnali sheep for body length (BL), body height (BH), heart girth (HG), paunch girth (PG), tail length (TL), head circumference (HC), ear length (EL), ear width (EW), face length (FL) and adult body weight (ABW) were analysed to study the relationship between linear body measurements and body weight. The mixed linear model with dam's weight at lambing as covariate was used to study the effect of non-genetic factors on body measurements and body weight. High estimates of heritability were obtained for BL, BH, HG, TL, HC, EL, EW, FL and ABW while moderate estimate was obtained for PG. The phenotypic correlations of BL, BH, HG, PG, HC and FL with ABW were positive and significant (0.32±0.04 to 0.59±0.08). The genetic correlations of HG, PG, HC and FL with ABW were 0.51±0.13, 0.42±0.19, 0.44±0.13 and 0.43±0.15, respectively. Various combinations of linear type traits to predict ABW were found to have coefficient of determination as high as 0.92. It is concluded that heart girth is the most important trait for estimation of live weight in sheep and the prediction equation is Body weight = -63.72 + 1.23 HG with R 2 = 0.87.
Aim:The present investigation was to study genetic characteristics of Harnali sheep with respect to growth performance and to estimate genetic parameters.Materials and Methods:The 22 years (1992-2013) data of growth traits of a 1603 synthetic population of Harnali sheep maintained at Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, was utilized for this study. A mixed methodology with regression on their dam's weight was used to study the effect of non-genetic factors on growth traits. Heritability, genetic and phenotypic correlations were estimated using paternal half-sib analysis for body weight at various ages and average daily gain (ADG) for different growth periods.Result:The overall least squares mean of body weights recorded for birth weight (BW), weaning weight (WW), six months body weight (SMW), one yearling body weight (YBW), average daily gain from birth to 3 months (ADG1) and average daily gain from 3 to 12 months (ADG2) were 3.35±0.05 kg, 12.41±0.08 kg, 16.30±0.12 kg, 21.88±0.08 kg, 100.66±0.86 g/day and 35.07±0.39 g/day, respectively. The effects of year of birth significantly (p<0.01) influenced the BW, WW, SMW, YWB, ADG1 and ADG2. The effects of sex of lamb significantly (p<0.01) influenced the BW, WW SMW, YWB, ADG1 and ADG2. The effects of dam's weight at lambing significantly (p<0.01) influenced BW, WW, SMW, YWB, ADG1 and ADG2. No definite trend was observed over the years for the averages of body weight and gain. The heritability estimates of BW, WW, SMW, YBW, ADG1 and ADG2 were 0.40±0.05, 0.38±0.05, 0.45±0.06, 0.29±0.05, 0.40±0.06 and 0.33±0.02, respectively. The male lambs were significantly heavier than females at all stages of growth. The heritability estimates were moderate for all the growth traits and high genetic correlations of BW and WW with SMW were found.Conclusion:Due to high heritability and positive correlations of SMW with other body weights and daily gain, it was concluded that selection on the basis of SMW would be the best approach to improve growth performance in Harnali sheep.
Data on growth, reproduction and wool traits of 1603 Harnali sheep maintained at Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar over a period of 22 years were utilized for genetic analysis. The overall least squares mean for birth weight (BW), weaning weight (WW), six month body weight (SMW), age at first lambing (AFL), weight at lambing (WL), average lambing interval (ALI), greasy fleece weight (GFW), staple length (SL) and Fibre diameter (FD) were estimated as 3.35±0.02 kg, 12.41±0.08 kg, 16.30±0.12 kg, 707.05±2.07 days, 26.91±0.10 kg and 402.85±2.40 days, 1.62±0.02 kg, 5.65±0.03 cm and 25.85±0.07 µ, respectively. The effect of year of birth, sex of lamb and dam's weight at lambing were significant for all growth traits. The effect of year of birth and dam's weight at lambing were significant for all reproduction traits and GFW. No definite trend was observed over the years for body weights and reproductive traits. The effect of sex was significant for early growth traits. The heritability estimates were moderate for all the growth traits with high genetic correlations of BW and WW with SMW. Reproduction traits had lower estimates of heritability which indicated presence of lower additive genetic variance for these traits. Heritability estimates for studied wool traits were moderate to high. Positive genetic and phenotypic correlation of BW and WW with six month body weight and grease fleece weight indicated that selection for six month body weight would increase body weight and grease fleece weight.
Harnali sheep is a new synthetic strain developed for superior carpet wool, better growth and adaptability. The present investigation was undertaken to evaluate the Harnali sheep for seven performance traits namely birth weight (BW), weaning weight (WW), six month body weight (SMW) , yearling body weight (YBW), adult body weight (ABW), age at first lambing (AFL) and grease fleece weight (GFW) with a mixed model methodology. The overall least squares means for BW, WW, SMW, YBW, ABW, GFW and AFL were estimated as 3.51±0.58 kg, 13.61±0.22 kg, 19.45±0.24 kg, 27.26±0.31 kg, 37.90±0.34 kg, 1662.65±35.46 gm and 789.98±10.40 days, respectively. The period of birth had significant effect on all the performance traits except GFW. The effect of sex was found significant on all the performance traits. The male lambs were significantly heavier than females at all ages. The effect of dam’s age at lambing was found non-significant on all the performance traits but dam’s weight at lambing significantly influenced all the performance traits and indicated heavier lambs born from heavier ewes. Heritability estimates were high for BW, WW, SMW, YBW, ABW and GFW as 0.68±0.19, 0.49±0.17, 0.65±0.15, 0.44±0.17, 0.42±0.17 and 0.54±0.17, respectively while moderate estimates was obtained for AFL as 0.38±0.16. The phenotypic correlations of WW and SMW were significant and positive with BW, YBW and ABW with moderate to high in magnitude ranging from 0.22±0.04 to 0.71±0.07. The phenotypic correlation between BW and SMW was high and positive (0.71±0.07). The genetic correlations among performance traits were low to high ranging from -0.03±0.04 to 0.61±0.12. Keeping in view the heritability and genetic correlations among performance traits it is concluded that SMW can serve as a good selection criterion in sheep at early age as it has high heritability and positive and high correlations with body weights at later ages and favourable correlation with age at first lambing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.