The activity of rhodanese, 3-mercaptopyruvate sulfurtransferase (MPST) and cystathionase in mouse liver, kidney, and four brain regions: tele-, meso-, di- and rhombencephalon was studied 30 min and 2 h following a sublethal dose of cyanide (4 mg/ kg body weight) intraperitoneal injection. Simultaneously, sulfane sulfur levels and total sulfur content, a direct or indirect source of sulfur for CN(-) conversion to SCN(-), were also investigated in these tissues. In the liver this dose of cyanide seemed to impair the process of cyanide detoxification by MPST, as well as rhodanese inhibition. The effects of cyanide administration to mice proved to be totally different in the liver and kidney. In the kidney, a significant increase in the rhodanese activity was observed as early as 30 min following cyanide intoxication, and an elevated cystathionase activity after 2 h was detected. This suggests the involvement of cystathionase in cyanide detoxification in the kidney. The activity of MPST remained at the same level as in the control group. In the rhombencephalon, similarly as in the kidney, L-cysteine desulfuration pathways, which generate sulfane sulfur and sulfurtransferases that transfer sulfane sulfur atoms to CN(-), seemed to play an important role as a defense system against cyanide. The stable level of sulfane sulfur and total sulfur content was accompanied in the rhombencephalon by an increased activity of MPST, cystathionase and rhodanese. In other brain regions the role of these three sulfurtransferases was not so clear and it seemed that in the telencephalon, where the total sulfur content, but not the sulfane sulfur level, was significantly increased, some sulfur-containing compounds, such as GSH and/or cysteine, appeared in response to cyanide.
The results of the present study suggest that ASA affects sulfur metabolism, in particular, renal and hepatic production of sulfane sulfur and NPSH in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.