The newly launched Fengyun-3D (FY-3D) satellite carried a wide-field auroral imager (WAI) that was developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP), which will provide a large field of view (FOV), high spatial resolution, and broadband ultraviolet images of the aurora and the ionosphere by imaging the N 2 LBH bands of emissions. The WAI consists of two identical cameras, each with an FOV of 68° in the along-track direction and 10° in the cross-track direction. The two cameras are tilted relative to each other to cover a fan-shaped field of size 130° × 10°. Each camera consists of an unobstructed four-mirror anastigmatic optical system, a BaF 2 filter, and a photon-counting imaging detector. The spatial resolution of WAI is ~10 km at the nadir point at a reference height of 110 km above the Earth’s surface. The sensitivity is >0.01 counts s −1 Rayleigh −1 pixel −1 (140–180 nm) for both cameras, which is sufficient for mapping the boundaries and the fine structures of the auroral oval during storms/substorms. Based on the tests and calibrations that were conducted prior to launch, the data processing algorithm includes photon signal decoding, geometric distortion correction, photometric correction, flat-field correction, line-of-sight projection and correction, and normalization between the two cameras. Preliminarily processed images are compared with DMSP SSUSI images. The agreement between the images that were captured by two instruments demonstrates that the WAI and the data processing algorithm operate normally and can provide high-quality scientific data for future studies on auroral dynamics.
As one of the three payloads for the Advanced Space-based Solar Observatory (ASO-S) mission, the Lyman-alpha (Lyα) Solar Telescope (LST) is composed of three instruments: a Solar Corona Imager (SCI), a Lyα Solar Disk Imager (SDI) and a full-disk White-light Solar Telescope (WST). When working in-orbit, LST will simultaneously perform high-resolution imaging observations of all regions from the solar disk to the inner corona up to 2.5 R⊙ (R⊙ stands for the mean solar radius) with a spatial resolution of 4.8″ and 1.2″ for coronal and disk observations, respectively, and a temporal resolution of 30 – 120 s and 1 – 120 s for coronal and disk observations, respectively. The maximum exposure time can be up to 20 s due to precise pointing and image stabilization function. Among the three telescopes of LST, SCI is a dual-waveband coronagraph simultaneously and independently observing the inner corona in the HI Lyα (121.6±10 nm) line and white light (WL) (700±40 nm) wavebands by using a narrowband Lyα beam splitter and has a field of view (FOV) from 1.1 to 2.5 R⊙. The stray-light suppression level can attain <10−6 B⊙ (B⊙ is the mean brightness of the solar disk) at 1.1 R⊙ and ≤5×10−8 B⊙ at 2.5 R⊙. SDI and WST are solar disk imagers working in the Lyα line and 360.0 nm wavebands, respectively, which adopt an off-axis two-mirror reflective structure with an FOV up to 1.2 R⊙, covering the inner coronal edge area and relating to coronal imaging. We present the up-to-date design for the LST payload.
The solar X-ray and Extreme Ultraviolet Imager (X-EUVI), developed by the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP), is the first space-based solar X-ray and Extreme ultraviolet (EUV) imager of China loaded on the Fengyun-3E (FY-3E) satellite supported by the China Meteorological Administration (CMA) for solar observation. Since started work on July 11, 2021, X-EUVI has obtained many solar images. The instrument employs an innovative dual-band design to monitor a much larger temperature range on the Sun, which covers 0.6–8.0 nm in the X-ray region with six channels and 19.5 nm in the EUV region. X-EUVI has a field of view of 42′, an angular resolution of 2.5″ per pixel in the EUV band and an angular resolution of 4.1″ per pixel in the X-ray band. The instrument also includes an X-ray and EUV irradiance sensor (X-EUVS) with the same bands as its imaging optics, which measures the solar irradiance and regularly calibrates the solar images. The radiometric calibration of X-EUVS on the ground has been completed, with a calibration accuracy of 12%. X-EUVI is loaded on the FY-3E satellite and rotates relative to the Sun at a uniform rate. Flat-field calibration is conducted by utilizing successive rotation solar images. The agreement between preliminarily processed X-EUVI images and SDO/AIA and Hinode/XRT images indicates that X-EUVI and the data processing algorithm operate properly and that the data from X-EUVI can be applied to the space weather forecast system of CMA and scientific investigations on solar activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.