This work reported the boiling characteristics of FC-72 and HFE-7100 at atmospheric pressure and at a liquid subcooling of 0–20 K. The FC-72 exhibits a more efficient nucleate boiling mode and a higher critical heat flux (CHF) than the HFE-7100. For film boiling mode, HFE-7100 becomes more efficient.
This paper deals with an experimental investigation Of pin fin boiling of saturated and subcooled HFE-7100 under atmospheric pressure. Fin base temperature and heat flux data are measured along with the fin tip temperature. The basic features of boiling stability of HFE-7100 boiling on pin fin had been reported for the first time. For a given liquid/heating surface combination there exist upper steady-state (USS) branch and lower steady-state (LSS) branch, and a large, unstable regime located in between. Zones with different stability characteristics are mapped according to boiling on fins with different aspect ratios. Liquid subcooling can largely enhance heat transfer performance. A longer fin can provide a safer operation.
This paper investigates the relative stability between nucleate and film boiling modes of FC-72 and HFE-7100, which have potential to electronic device cooling applications. Equilibrium heat flux, qc, which refers to as an index for measuring the relative stability of boiling, was obtained at a liquid subcooling of 0-20 K. Experimental results reveal that (1) qc increases with liquid subcooling; (2) although the FC-72 exhibits a higher critical heat flux (CHF) than does the HFE-7100, somewhat unexpectedly, the equilibrium heat flux for the latter is greater than the former. Restated, at a prescribed heat flux, the risk to burnout for boiling of FC-72 is higher than that of HFE-7100. The shift in boiling curves interprets the experimental findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.