The effect of the adatom surface diffusivity on the evolution of the microstructure and the intrinsic stress of thin metal films was investigated for the case of growth of polycrystalline Ag films on amorphous SiO 2 (a-SiO 2) and amorphous Ge (a-Ge) substrates, with high and low Ag adatom surface diffusivity, respectively. The surface diffusivity of the deposited Ag adatoms on the aGe substrate is suppressed also after coalescence of Ag islands due to the continuous (re)segregation of Ge at the surface of the growing film as evidenced by in-situ XPS. An assessment could be made of the role of adatom surface diffusivity on the microstructural development and the intrinsic stress evolution during film growth. As demonstrated by ex-situ TEM and ex-situ XRD, the Ag films grown on the a-SiO 2 and aGe substrates possess strikingly different microstructures in terms of grain shape, grain size, and crystallographic texture. Nevertheless, the real-time in-situ stress measurements revealed a compressive ! tensile ! compressive stress evolution for the developing Ag films on both types of substrates, however on different time scales and with stress-component values of largely different magnitudes. It was concluded that (i) the microstructural development of metallic thin films is predominated by the surface diffusivity of the adatoms and (ii) the intrinsic stress evolution is largely controlled by the developing microstructure and the grain-boundary diffusivity. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.