We report on the coherence properties of single photons from chromium-based colour centres in diamond. We use field-correlation and spectral lineshape measurements to reveal the interplay between slow spectral wandering and fast dephasing mechanisms as a function of temperature. We show that the zero-phonon transition frequency and its linewidth follow a power-law dependence on temperature indicating that the dominant fast dephasing mechanisms for these centres are direct electron-phonon coupling and phonon-modulated Coulomb coupling to nearby impurities. Further, the observed reduction in the quantum yield for photon emission as a function of temperature is consistent with the opening of additional nonradiative channels through thermal activation to higher energy states predominantly and indicates a near-unity quantum efficiency at 4 K.PACS numbers: 61.72.J-, 81.05.ug
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.