It is known that dental pulp stem cells (DPSCs) can be induced to differentiate into vasculogenic endothelial (VE) cells. However, the process that results in sprouting and anastomosis of DPSC-derived vessels remains unclear. Here, we performed studies to understand the mechanisms underpinning the anastomosis of the host vasculature with blood vessels generated by DPSCs (a model for mesenchymal stem cells). VE-cadherin–silenced primary human DPSCs seeded in tooth slice/scaffolds and transplanted into the subcutaneous space of immunodeficient mice generated fewer functional blood vessels (i.e., anastomosed with the host vasculature) than control DPSCs transduced with scrambled sequences. Both VE-cadherin–silenced and mitogen-activated protein kinase kinase 1 (MEK1)–silenced cells showed a decrease in the number of capillary sprouts in vitro. Interestingly, DPSC stably transduced with a VE-cadherin reporter demonstrated that vascular endothelial growth factor (VEGF) induces VE-cadherin expression in sprouting DPSCs undergoing anastomosis, but not in quiescent DPSCs. To begin to understand the mechanisms regulating VE-cadherin, we stably silenced MEK1 and observed that VEGF was no longer able to induce VE-cadherin expression and capillary sprout formation. Notably ERG, a transcriptional factor downstream from MEK/ERK, binds to the promoter region of VE-cadherin (chip assay) and is induced by VEGF in DPSCs. Collectively, these data defined a signaling pathway triggered by VEGF that results in phosphorylation of MEK1/ERK and activation of ERG leading to expression of VE-cadherin, which is required for anastomosis of DPSC-derived blood vessels. In conclusion, these results unveiled a signaling pathway that enables the generation of functional blood vessels upon vasculogenic differentiation of DPSCs.
Previously, we reported that the fluorapatite (FA)-modified polycaprolactone (PCL) nanofiber could be an odontogenic/osteogenic inductive tissue-engineering scaffold by inducing stem cell differentiation and mineralization. The present study aimed to explore which of the signal pathways affected this differentiation and mineralization process. The Human Signal Transduction PathwayFinder RT Profiler PCR Array was used to analyze the involvement of potential signal transduction pathways during human dental pulp stem cell (DPSCs) osteogenic differentiation induced by FA-modified PCL nanofiber scaffolds. Based on the results, perturbation studies of the signaling pathways hedgehog, insulin, and Wnt were performed. Moreover, the autophagy process was studied, as indicated by the expression of the microtubule-associated protein 1 light chain 3A/B-II (LC3-II) and the cell osteogenic phenotypic changes. In a comparison of the cells grown on PCL + FA scaffolds and those on PCL-only scaffolds, the transcript expression of BMP2, BMP4, FOXA2, PTCH1, WNT1, and WNT2 (PCR array-labeled signal proteins of the hedgehog pathway); CEBPB, FASN, and HK2 (PCR array-labeled signal proteins of the insulin pathway); and CCND1, JUN, MYC, TCF7, and WISP1 (PCR array-labeled signal proteins of the Wnt pathway) doubled at day 14 when obvious cell osteogenic differentiation occurred. Phenotypically, in all the perturbation groups at day 14, ALP activity, OPN, and autophagy marker LC3-II expression were coincidently decreased. Consistently, no positive alizarin red staining or von Kossa staining was observed in the specimens from these perturbation groups at day 28. The results showed that when obvious cell differentiation occurred at day 14 on PCL + FA control groups, the inhibition of the hedgehog, insulin, and Wnt pathways significantly decreased DPSC osteogenic differentiation and mineralization. The osteogenic differentiation of DPSCs grown on FA-modified PCL scaffolds appeared to be positively modulated by the hedgehog, insulin, and Wnt signal pathways, which were coordinated with and/or mediated by the cell autophagy process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.