Experimental evidence of the dynamics of mesoscopic structure in room-temperature ionic liquids-a feature expected to correlate with many physicochemical properties of these materials-remains limited. Here, we report the observation of slow, sub-α relaxations corresponding to dynamics of nanoscale hydrophobic aggregates in a systematic series of 1-alkyl-3-methylimidazolium-based ionic liquids from detailed analysis of dynamic-mechanical and broad-band dielectric spectra. The emergence of the sub-α relaxations correlates with increases in the zero-shear viscosity and static dielectric permittivity, constituting direct evidence of the influence of mesoscale aggregation on the physicochemical properties of ionic liquids.
We introduce an accurate and efficient method for characterizing surface wetting and interfacial properties, such as the contact angle made by a liquid droplet on a solid surface, and the vapor-liquid surface tension of a fluid. The method makes use of molecular simulations in conjunction with the indirect umbrella sampling technique to systematically wet the surface and estimate the corresponding free energy. To illustrate the method, we study the wetting of a family of Lennard-Jones surfaces by water. We estimate contact angles for surfaces with a wide range of attractions for water by using our method and also by using droplet shapes. Notably, as surface -water attractions are increased, our method is able to capture the transition from partial to complete wetting. Finally, the method is straightforward to implement and computationally efficient, providing accurate contact angle estimates in roughly 5 nanoseconds of simulation time. A. IntroductionWetting of solid surfaces by fluids is important in diverse disciplines, including but not limited to surface chemistry, materials characterization, oil and gas recovery 1-5 . In general, the wettability of a solid by a fluid is characterized by a wetting coefficient, k ≡ (γ SV − γ SL )/γ VL , where γ represents surface tension, and the subscripts correspond to the coexisting vapor (V), liquid (L) and solid (S) phases. The wetting coefficient is also related to the contact angle (θ ) that a liquid droplet (surrounded by its vapor) makes with a solid surface; according to Young's equation, cos θ = (γ SV − γ SL )/γ VL = k. Thus, the extent to which a fluid prefers to wet a solid, or the preference of the solid for the
Mesoscopic aggregation in aprotic ionic liquids due to the microphase separation of polar and non-polar components is expected to correlate strongly with the physicochemical properties of ionic liquids and therefore their potential applications. The most commonly cited experimental evidence of such aggregation is the observation of a low-q pre-peak in the x-ray and neutron scattering profiles, attributed to the polarity alternation of polar and apolar phases. In this work, a homologous series of phosphonium ionic liquids with the bis(trifluoromethylsulfonyl)imide anion and systematically varying alkyl chain lengths on the phosphonium cation are investigated by small and wide-angle x-ray scattering, dynamic-mechanical spectroscopy, and broadband dielectric spectroscopy. A comparison of the real space correlation distance corresponding to the pre-peak and the presence or absence of the slow sub-α dielectric relaxation previously associated with the motion of mesoscale aggregates reveals a disruption of mesoscale aggregates with increasing symmetry of the quaternary phosphonium cation. These findings contribute to the broader understanding of the interplay of molecular structures, mesoscale aggregation, and physicochemical properties in aprotic ionic liquids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.