Deep eutectic solvents (DESs) are an emerging class of non-aqueous solvents that are potentially scalable, easy to prepare and functionalize for many applications ranging from biomass processing to energy storage technologies. Predictive understanding of the fundamental correlations between local structure and macroscopic properties is needed to exploit the large design space and tunability of DESs for specific applications. Here, we employ a range of computational and experimental techniques that span length-scales from molecular to macroscopic and timescales from picoseconds to seconds to study the evolution of structure and dynamics in model DESs, namely Glyceline and Ethaline, starting from the parent compounds. We show that systematic addition of choline chloride leads to microscopic heterogeneities that alter the primary structural relaxation in glycerol and ethylene glycol and result in new dynamic modes that are strongly correlated to the macroscopic properties of the DES formed.
Experimental evidence of the dynamics of mesoscopic structure in room-temperature ionic liquids-a feature expected to correlate with many physicochemical properties of these materials-remains limited. Here, we report the observation of slow, sub-α relaxations corresponding to dynamics of nanoscale hydrophobic aggregates in a systematic series of 1-alkyl-3-methylimidazolium-based ionic liquids from detailed analysis of dynamic-mechanical and broad-band dielectric spectra. The emergence of the sub-α relaxations correlates with increases in the zero-shear viscosity and static dielectric permittivity, constituting direct evidence of the influence of mesoscale aggregation on the physicochemical properties of ionic liquids.
Charge transport and structural dynamics in the 1:2 mol ratio mixture of lidocaine and decanoic acid (LID-DA), a model deep eutectic mixture (DEM), have been characterized over a wide temperature range using broad-band dielectric spectroscopy and depolarized dynamic light scattering. Additionally, Fourier transform infrared spectroscopy measurements were performed to assess the degree of proton transfer between the neutral parent molecules. From our detailed analysis of the dielectric spectra, we have determined that this carboxylic-acid-based DEM is approximately 25% ionic at room temperature. Furthermore, we have found that the characteristic diffusion rate of mobile charge carriers is practically identical to the rate of structural relaxation at all measured temperatures, indicating that fast proton transport does not occur in LID-DA. Our results demonstrate that while LID-DA exhibits the thermal characteristics of a DEM, its charge transport properties resemble those of a protic ionic liquid.
Continuous progress
in energy storage and conversion technologies
necessitates novel experimental approaches that can provide fundamental
insights regarding the impact of reduced dimensions on the functional
properties of materials. Here, we demonstrate a nondestructive experimental
approach to probe nanoscale ion dynamics in ultrathin films of polymerized
1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide over
a broad frequency range spanning over 6 orders of magnitude by broadband
dielectric spectroscopy. The approach involves using an electrode
configuration with lithographically patterned silica nanostructures,
which allow for an air gap between the confined ion conductor and
one of the electrodes. We observe that the characteristic rate of
ion dynamics significantly slows down with decreasing film thicknesses
above the calorimetric glass transition of the bulk polymer. However,
the mean rates remain bulk-like at lower temperatures. These results
highlight the increasing influence of the polymer/substrate interactions
with decreasing film thickness on ion dynamics.
Polymerized ionic liquids are a promising class of versatile solid-state electrolytes for applications ranging from electrochemical energy storage to flexible smart materials that remain limited by their relatively low ionic conductivities compared to conventional electrolytes. Here, we show that the in situ polymerization of the vinyl cationic monomer, 1-ethyl-3vinylimidazolium with the bis(trifluoromethanesulfonyl)imide counteranion, under nanoconfinement within 7.5 ± 1.0 nm diameter nanopores results in a nearly 1000-fold enhancement in the ionic conductivity compared to the material polymerized in bulk. Using insights from broadband dielectric and Raman spectroscopic techniques, we attribute these results to the role of confinement on molecular conformations, ion coordination, and subsequently the ionic conductivity in the polymerized ionic liquid. These results contribute to the understanding of the dynamics of nanoconfined molecules and show that in situ polymerization under nanoscale geometric confinement is a promising path toward enhancing ion conductivity in polymer electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.