Dengue fever and dengue hemorrhagic fever are significant global public health problems, and understanding the overall immune response to infection will contribute to appropriate management of the disease and its potentially severe complications. Live attenuated and subunit vaccine candidates, which are under clinical evaluation, induce primarily an antibody response to the virus and minimal cross-reactive T-cell responses. Currently, there are no available tools to assess protective T-cell responses during infection or after vaccination. In this study, we utilize an immunoproteomics process to uncover novel HLA-A2-specific epitopes derived from dengue virus (DV)-infected cells. These epitopes are conserved, and we report that epitope-specific cytotoxic lymphocytes (CTLs) are cross-reactive against all 4 DV serotypes. These epitopes have potential as new informational and diagnostic tools to characterize T-cell immunity in DV infection and may serve as part of a universal vaccine candidate complementary to current vaccines in trial.
The accuracy in quantitative analysis of N-linked glycopeptides and glycosylation site mapping in cancer is critical to the fundamental question of whether the aberration is due to changes in the total concentration of glycoproteins or variations in the type of glycosylation of proteins. Toward this goal, we developed a lectin-directed tandem labeling (LTL) quantitative proteomics strategy in which we enriched sialylated glycopeptides by SNA, labeled them at the N-terminus by acetic anhydride ((1)H(6)/(2)D(6)) reagents, enzymatically deglycosylated the differentially labeled peptides in the presence of heavy water (H(2)(18)O), and performed LC/MS/MS analysis to identify glycopeptides. We successfully used fetuin as a model protein to test the feasibility of this LTL strategy not only to find true positive glycosylation sites but also to obtain accurate quantitative results on the glycosylation changes. Further, we implemented this method to investigate the sialylation changes in prostate cancer serum samples as compared to healthy controls. Herein, we report a total of 45 sialylated glycopeptides and an increase of sialylation in most of the glycoproteins identified in prostate cancer serum samples. Further quantitation of nonglycosylated peptides revealed that sialylation is increased in most of the glycoproteins, whereas the protein concentrations remain unchanged. Thus, LTL quantitative technique is potentially an useful method for obtaining simultaneous unambiguous identification and reliable quantification of N-linked glycopeptides.
Influenza virus infection and the resulting complications are a significant global public health problem. Improving humoral immunity to influenza is the target of current conventional influenza vaccines, however, these are generally not cross-protective. On the contrary, cell-mediated immunity generated by primary influenza infection provides substantial protection against serologically distinct viruses due to recognition of cross-reactive T cell epitopes, often from internal viral proteins conserved between viral subtypes. Efforts are underway to develop a universal flu vaccine that would stimulate both the humoral and cellular immune responses leading to long-lived memory. Such a universal vaccine should target conserved influenza virus antibody and T cell epitopes that do not vary from strain to strain. In the last decade, immunoproteomics, or the direct identification of HLA class I presented epitopes, has emerged as an alternative to the motif prediction method for the identification of T cell epitopes. In this study, we used this method to uncover several cross-specific MHC class I specific T cell epitopes naturally presented by influenza A-infected cells. These conserved T cell epitopes, when combined with a cross-reactive antibody epitope from the ectodomain of influenza M2, generate cross-strain specific cell mediated and humoral immunity. Overall, we have demonstrated that conserved epitope-specific CTLs could recognize multiple influenza strain infected target cells and, when combined with a universal antibody epitope, could generate virus specific humoral and T cell responses, a step toward a universal vaccine concept. These epitopes also have potential as new tools to characterize T cell immunity in influenza infection, and may serve as part of a universal vaccine candidate complementary to current vaccines.
BackgroundIn approximately 80% of patients, ovarian cancer is diagnosed when the patient is already in the advanced stages of the disease. CA125 is currently used as the marker for ovarian cancer; however, it lacks specificity and sensitivity for detecting early stage disease. There is a critical unmet need for sensitive and specific routine screening tests for early diagnosis that can reduce ovarian cancer lethality by reliably detecting the disease at its earliest and treatable stages.ResultsIn this study, we investigated the N-linked sialylated glycopeptides in serum samples from healthy and ovarian cancer patients using Lectin-directed Tandem Labeling (LTL) and iTRAQ quantitative proteomics methods. We identified 45 N-linked sialylated glycopeptides containing 46 glycosylation sites. Among those, ten sialylated glycopeptides were significantly up-regulated in ovarian cancer patients’ serum samples. LC-MS/MS analysis of the non-glycosylated peptides from the same samples, western blot data using lectin enriched glycoproteins of various ovarian cancer type samples, and PNGase F (+/−) treatment confirmed the sialylation changes in the ovarian cancer samples.ConclusionHerein, we demonstrated that several proteins are aberrantly sialylated in N-linked glycopeptides in ovarian cancer and detection of glycopeptides with abnormal sialylation changes may have the potential to serve as biomarkers for ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.