We present a multi-wavelength study of the low-mass X-ray binary Sco X-1 using Kepler K2 optical data and Fermi GBM and MAXI X-ray data. We recover a clear sinusoidal orbital modulation from the Kepler data. Optical fluxes are distributed bimodally around the mean orbital light curve, with both high and low states showing the same modulation. The high state is broadly consistent with the flaring branch of the Z diagram and the low state with the normal branch. We see both rapid optical flares and slower dips in the high state, and slow brightenings in the low state. High state flares exhibit a narrow range of amplitudes with a striking cut-off at a maximum amplitude. Optical fluxes correlate with X-ray fluxes in the high state, but in the low state they are anti-correlated. These patterns can be seen clearly in both fluxflux diagrams and cross-correlation functions and are consistent between MAXI and GBM. The high state correlation arises promptly with at most a few minutes lag. We attribute this to thermal reprocessing of X-ray flares. The low state anti-correlation is broader, consistent with optical lags of between zero and 30 min, and strongest with respect to high energy X-rays. We suggest that the decreases in optical flux in the low state may reflect decreasing efficiency of disc irradiation, caused by changes in the illumination geometry. These changes could reflect the vertical extent or covering factor of obscuration or the optical depth of scattering material.
We present the lightcurves, spectra, and hardness-intensity diagram (HID) of the high mass X-ray binary V0332+53 using Fermi/GBM, MAXI, Swift /BAT, and INTE-GRAL through its 2015 Type II outburst. We observe characteristic features in the X-ray emission (2-50 keV) due to periastron passages, the dynamical timescale of the accretion disc, and changes within the accretion column between a radiationdominated flow and a flow dominated by Coulomb interactions. Based on the HID and the light curves, the critical luminosity is observed to decrease by ∼ 5% − 7% during the outburst, signaling a decrease in the magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.