Many applications require efficient methods for solving continuous shortest path problems. Such paths can be viewed as characteristics of static Hamilton-Jacobi equations. Several fast numerical algorithms have been developed to solve such equations on the whole domain. In this paper we consider a somewhat different problem, where the solution is needed at one specific point, so we restrict the computations to a neighborhood of the characteristic. We explain how heuristic under/over-estimate functions can be used to obtain a causal domain restriction, significantly decreasing the computational work without sacrificing convergence under mesh refinement. The discussed techniques are inspired by an alternative version of the classical A* algorithm on graphs. We illustrate the advantages of our approach on continuous isotropic examples in 2D and 3D. We compare its efficiency and accuracy to previous domain restriction techniques. We also analyze the behavior of errors under the grid refinement and show how Lagrangian (Pontryagin's Maximum Principle-based) computations can be used to enhance our method.
Realistic path planning applications often require optimizing with respect to several criteria simultaneously. Here we introduce an efficient algorithm for bi-criteria path planning on graphs. Our approach is based on augmenting the state space to keep track of the "budget" remaining to satisfy the constraints on secondary cost. The resulting augmented graph is acyclic and the primary cost can be then minimized by a simple upward sweep through budget levels. The efficiency and accuracy of our algorithm is tested on Probabilistic Roadmap graphs to minimize the distance of travel subject to a constraint on the overall threat exposure of the robot. We also present the results from field experiments illustrating the use of this approach on realistic robotic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.