Abstract-Parallel machines are becoming more complex with increasing core counts and more heterogeneous architectures. However, the commonly used parallel programming models, C/C++ with MPI and/or OpenMP, make it difficult to write source code that is easily tuned for many targets. Newer language approaches attempt to ease this burden by providing optimization features such as automatic load balancing, overlap of computation and communication, message-driven execution, and implicit data layout optimizations. In this paper, we compare several implementations of LULESH, a proxy application for shock hydrodynamics, to determine strengths and weaknesses of different programming models for parallel computation. We focus on four traditional (OpenMP, MPI, MPI+OpenMP, CUDA) and four emerging (Chapel, Charm++, Liszt, Loci) programming models. In evaluating these models, we focus on programmer productivity, performance and ease of applying optimizations.
Specialized image signal processors (ISPs) exploit the structure of image processing pipelines to minimize memory bandwidth using the architectural pattern of line-buffering , where all intermediate data between each stage is stored in small on-chip buffers. This provides high energy efficiency, allowing long pipelines with tera-op/sec. image processing in battery-powered devices, but traditionally requires painstaking manual design in hardware. Based on this pattern, we present Darkroom, a language and compiler for image processing. The semantics of the Darkroom language allow it to compile programs directly into line-buffered pipelines, with all intermediate values in local line-buffer storage, eliminating unnecessary communication with off-chip DRAM. We formulate the problem of optimally scheduling line-buffered pipelines to minimize buffering as an integer linear program. Finally, given an optimally scheduled pipeline, Darkroom synthesizes hardware descriptions for ASIC or FPGA, or fast CPU code. We evaluate Darkroom implementations of a range of applications, including a camera pipeline, low-level feature detection algorithms, and deblurring. For many applications, we demonstrate gigapixel/sec. performance in under 0.5mm 2 of ASIC silicon at 250 mW (simulated on a 45nm foundry process), real-time 1080p/60 video processing using a fraction of the resources of a modern FPGA, and tens of megapixels/sec. of throughput on a quad-core x86 processor.
Deep learning frameworks automate the deployment, distribution, synchronization, memory allocation, and hardware acceleration of models represented as graphs of computational operators. These operators wrap high-performance libraries such as cuDNN or NNPACK. When the computation does not match any predefined library call, custom operators must be implemented, often at high engineering cost and performance penalty, limiting the pace of innovation. To address this productivity gap, we propose and evaluate: (1) a domain-specific language with a tensor notation close to the mathematics of deep learning; (2) a Just-In-Time optimizing compiler based on the polyhedral framework; (3) carefully coordinated linear optimization and evolutionary algorithms to synthesize high-performance CUDA kernels; (4) the transparent integration of our flow into PyTorch and Caffe2, providing the fully automatic synthesis of high-performance GPU kernels from simple tensor algebra. The performance is comparable to, and often exceeds the performance of, highly tuned libraries. CCS Concepts: • Software and its engineering → Compilers;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.