We report on and characterize, via molecular dynamics (MD) studies, the evolution of the structure of Cu50Zr50 and Cu64Zr36 metallic glasses (MGs) as temperature is varied. Interestingly, a percolating icosahedral network appears in the Cu64Zr36 system as it is supercooled. This leads us to introduce a static length scale, which grows dramatically as this three dimensional system approaches the glass transition. Amidst interpenetrating connections, non-interpenetrating connections between icosahedra are shown to become prevalent upon supercooling and to greatly enhance the connectivity of the MG's icosahedral network. Additionally, we characterize the chemical compositions of the icosahedral networks and their components. These findings demonstrate the importance of non-interpenetrating connections for facilitating extensive structural networks in Cu-Zr MGs, which in turn drive dynamical slowing in these materials.
Abstract. Optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to superficial cortical tissues. Diffuse optical tomography (DOT) techniques provide noninvasive imaging, but previous DOT systems for rodent neuroimaging have been limited either by sparse spatial sampling or by slow speed. Here, we develop a DOT system with asymmetric source-detector sampling that combines the high-density spatial sampling (0.4 mm) detection of a scientific complementary metal-oxide-semiconductor camera with the rapid (2 Hz) imaging of a few (<50) structured illumination (SI) patterns. Analysis techniques are developed to take advantage of the system's flexibility and optimize trade-offs among spatial sampling, imaging speed, and signal-to-noise ratio. An effective source-detector separation for the SI patterns was developed and compared with light intensity for a quantitative assessment of data quality. The light fall-off versus effective distance was also used for in situ empirical optimization of our light model. We demonstrated the feasibility of this technique by noninvasively mapping the functional response in the somatosensory cortex of the mouse following electrical stimulation of the forepaw. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Background: Neural decoding could be useful in many ways, from serving as a neuroscience research tool to providing a means of augmented communication for patients with neurological conditions. However, applications of decoding are currently constrained by the limitations of traditional neuroimaging modalities. Electrocorticography requires invasive neurosurgery, magnetic resonance imaging (MRI) is too cumbersome for uses like daily communication, and alternatives like functional near-infrared spectroscopy (fNIRS) offer poor image quality. High-density diffuse optical tomography (HD-DOT) is an emerging modality that uses denser optode arrays than fNIRS to combine logistical advantages of optical neuroimaging with enhanced image quality. Despite the resulting promise of HD-DOT for facilitating field applications of neuroimaging, decoding of brain activity as measured by HD-DOT has yet to be evaluated. Objective: To assess the feasibility and performance of decoding with HD-DOT in visual cortex. Methods and Results: To establish the feasibility of decoding at the single-trial level with HD-DOT, a template matching strategy was used to decode visual stimulus position. A receiver operating characteristic (ROC) analysis was used to quantify the sensitivity, specificity, and reproducibility of binary visual decoding. Mean areas under the curve (AUCs) greater than 0.97 across 10 imaging sessions in a highly sampled participant were observed. ROC analyses of decoding across 5 participants established both reproducibility in multiple individuals and the feasibility of inter-individual decoding (mean AUCs > 0.7), although decoding performance varied between individuals. Phase-encoded checkerboard stimuli were used to assess more complex, non-binary decoding with HD-DOT. Across 3 highly sampled participants, the phase of a 60° wide checkerboard wedge rotating 10° per second through 360° was decoded with a within-participant error of 25.8±24.7°. Decoding between participants was also feasible based on permutation-based significance testing. Conclusions: Visual stimulus information can be decoded accurately, reproducibly, and across a range of detail (for both binary and non-binary outcomes) at the single-trial level (without needing to block-average test data) using HD-DOT data. These results lay the foundation for future studies of more complex decoding with HD-DOT and applications in clinical populations.
The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre-and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.