[1] Electron densities in planetary ionospheres increase substantially during solar flares in response to the increased solar irradiance at soft X-ray and extreme ultraviolet wavelengths. Here we modify an existing model of the ionosphere of Mars to incorporate time-dependent solar irradiances and use it to simulate ionospheric conditions during the X14.4 and M7.8 solar flares of 15 and 26 April 2001, respectively. Simulations were validated by comparison to Mars Global Surveyor radio occultation measurements of vertical profiles of ionospheric electron density. Adjustments to the model's representation of the neutral atmosphere were required to adequately reproduce the observations before and during these solar flares. An accurate representation of electron-impact ionization, an important process in the lower ionosphere of Mars, is required in order to adequately simulate the doubling of electron densities that can occur in the lower ionosphere of Mars during a solar flare. We used the W-value representation of electron-impact ionization, in which the number of ion-electron pairs created per photon absorbed equals the ratio of the difference between photon energy and the ionization potential of carbon dioxide to the W-value. A range of possible W-values for Mars have been suggested in the literature, and a value of 28 eV led to the best reproduction of flare-affected observations. Simulated enhancements in the electron density are largest and persist the longest in the M1 region. We predict that the peak electron density in the M1 region can exceed that of the M2 region for short periods during intense solar flares.
[1] By examining electron density profiles from the Mars Express Radio Science Experiment MaRS, we show that the vertical structure of the dayside ionosphere of Mars is more variable and more complex than previously thought. The top of the ionosphere can be below 250 km (25% occurrence rate) or above 650 km (1%); the topside ionosphere can be well-described by a single scale height (10%) or two/three regions with distinct scale heights (25% or 10%), where those scale heights range between tens and hundreds of kilometers; the main layer of the ionosphere can have a sharply pointed (5%), flat-topped (6%), or wavy (8%) shape, in contrast to its usual Chapman-like shape; a broad increase in electron density is detected at 160-180 km (10%); a narrow increase in electron density is sometimes found in strongly-magnetized regions; and an additional layer is present between the M1 and M2 layers (3%).
[1] During the six Cassini Titan flybys T83-T88 (May 2012 to November 2012) the electron density in the ionospheric peak region, as measured by the radio and plasma wave science instrument/Langmuir probe, has increased significantly, by 15-30%, compared to previous average. These measurements suggest that a long-term change has occurred in the ionosphere of Titan, likely caused by the rise to the new solar maximum with increased EUV fluxes. We compare measurements from TA, TB, and T5, from the declining phase of solar cycle 23 to the recent T83-T88 measurements during cycle 24, since the solar irradiances from those two intervals are comparable. The peak electron densities normalized to a common solar zenith angle N norm from those two groups of flybys are comparable but increased compared to the solar minimum flybys (T16-T71). The integrated solar irradiance over the wavelengths 1-80 nm, i.e., the solar energy flux, F e , correlates well with the observed ionospheric peak density values. Chapman layer theory predicts that N norm / F k e , with k = 0.5. We find observationally that the exponent k = 0.54˙0.18. Hence, the observations are in good agreement with theory despite the fact that many assumptions in Chapman theory are violated. This is also in good agreement with a similar study by Girazian and Withers (2013) on the ionosphere of Mars. We use this power law to estimate the peak electron density at the subsolar point of Titan during solar maximum conditions and find it to be about 6500 cm -3 , i.e., 85-160% more than has been measured during the entire Cassini mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.