Background.
Organ transplantation is life-saving and continued investigations into immunologic mechanisms that drive organ rejection are needed to improve immunosuppression therapies and prevent graft failure. DNA-dependent protein kinase catalytic subunit, DNA dependent-protein kinase catalytic subunit (DNA-PKcs), is a critical component of both the cellular and humoral immune responses. In this study, we investigate the contribution of DNA-PKcs to allogeneic skin graft rejection to potentially highlight a novel strategy for inhibiting transplant rejection.
Methods.
Fully MHC mismatched murine allogeneic skin graft studies were performed by transplanting skin from BalbC mice to C57bl6 mice and treating with either vehicle or the DNA-PKcs inhibitor NU7441. Graft rejection, cytokine production, immune cell infiltration, and donor-specific antibody formation were analyzed.
Results.
DNA-PKcs inhibition significantly reduced necrosis and extended graft survival compared with controls (mean survival 14 d versus 9 d, respectively). Inhibition reduced the production of the cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ and the infiltration of CD3+ lymphocytes into grafts. Furthermore, DNA-PKcs inhibition reduced the number of CD19+ B cells and CD19+ CD138+ plasma cells coinciding with a significant reduction in donor-specific antibodies. At a molecular level, we determined that the immunosuppressive effects of DNA-PKcs inhibition were mediated, in part, via inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling through reduced expression of the p65 subunit.
Conclusions.
Our data confirm that DNA-PKcs contributes to allogeneic graft rejection and highlight a novel immunologic function for DNA-PKcs in the regulation of nuclear factor kappa-light-chain-enhancer of activated B cells and concomitant cytokine production.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.