Concise complexity analyses are presented for simple trust region algorithms for solving unconstrained optimization problems. In contrast to a traditional trust region algorithm, the algorithms considered in this paper require certain control over the choice of trust region radius after any successful iteration. The analyses highlight the essential algorithm components required to obtain certain complexity bounds. In addition, a new update strategy for the trust region radius is proposed that offers a second-order complexity bound.
We consider several extensions of the Maillet determinant studied by Malo, Turnbull, and Carlitz and Olson, and derive properties of the underlying matrices. In particular, we compute the eigenvectors and eigenvalues of these matrices, which yield formulas for these new determinants.
We propose an estimator for the singular vectors of high-dimensional low-rank matrices corrupted by additive subgaussian noise, where the noise matrix is allowed to have dependence within rows and heteroskedasticity between them. We prove finite-sample 2,∞ bounds and a Berry-Esseen theorem for the individual entries of the estimator, and we apply these results to high-dimensional mixture models. Our Berry-Esseen theorem clearly shows the geometric relationship between the signal matrix, the covariance structure of the noise, and the distribution of the errors in the singular vector estimation task. These results are illustrated in numerical simulations. Unlike previous results of this type, which rely on assumptions of gaussianity or independence between the entries of the additive noise, handling the dependence between entries in the proofs of these results requires careful leave-one-out analysis and conditioning arguments. Our results depend only on the signal-to-noise ratio, the sample size, and the spectral properties of the signal matrix.
Understanding dramatic changes in the evolution of networks is central to statistical network inference, as underscored by recent challenges of predicting and distinguishing pandemic-induced transformations in organizational and communication networks. We consider a joint network model in which each node has an associated time-varying low-dimensional latent vector of feature data, and connection probabilities are functions of these vectors. Under mild assumptions, the time-varying evolution of the constellation of latent vectors exhibits low-dimensional manifold structure under a suitable notion of distance. This distance can be approximated by a measure of separation between the observed networks themselves, and there exist consistent Euclidean representations for underlying network structure, as characterized by this distance, at any given time. These Euclidean representations permit the visualization of network evolution and transform network inference questions such as change-point and anomaly detection into a classical setting. We illustrate our methodology with real and synthetic data, and identify change points corresponding to massive shifts in pandemic policies in a communication network of a large organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.