No abstract
The present technology of transesterification of vegetable oils to produce biodiesel, which is suited to replace petrodiesel, has economic challenges, and therefore, alternative sources are being explored. Microalgae, a renewable, third-generation biofuel resource, have the potential to become a viable feedstock due to their high oil content and environmentally friendly nature. The present study investigates the effect of microwave irradiation on the simultaneous extraction and transesterification of algae lipids to produce fatty acid methyl ester (FAME), in a batch reaction system using sulphuric acid catalyst. In situ transesterification combines the two steps of lipid extraction and transesterification into a single step. The microwave synthesis unit comprised of a 3-neck round bottom flask inside a 1300-Watt microwave oven, fitted with a quick-fit condenser and having an external stirrer. Response surface methodology (RSM) was used to analyse the influence of process variables, dry algae to methanol ratio 1 : 4 − 1 : 14 g / ml , algae biomass to catalyst ratio 1 : 0.0032 − 1 : 0.0368 wt % , and reaction time 1 − 11 min , at 500 rpm stirring rate for in situ reaction. FAME was analysed using gas chromatography (GC). The total lipid content of Arthrospira Spirulina platensis microalgae biomass was found to be 10.7 % by weight. The algae biomass also contained proteins at 51.83 % , moisture content at 7.8 % , and ash content 14.30 % by weight. RSM gave the optimum process conditions as dry algae biomass feed to methanol wt / vol ratio of 1 : 9, catalyst concentration of 2 wt % , and reaction time of 7 minutes for a maximum FAME yield of 83.43 wt % . The major fatty acid composition of FAME was palmitic 43.83 % , linoleic 38.83 % , and linolenic 19.41 % . FAME properties obtained according to European Standards (EN 14214) and American Society for Testing and Materials (ASTM D 6751) standards were as follows: flash point 16 4 o C calorific value 32,911 kJ / kg , acid value 0.475 KOH / g , viscosity 4.45 m m 2 / s , and specific gravity 0.868 . The study showed that Arthrospira Spirulina platensis microalgae lipid FAME met the biodiesel standards (EN 14214 and ASTM D 6751) and has the potential to replace petrodiesel. Microwave irradiation increased the reaction rate resulting in a reduced reaction time of 7 minutes (as compared to 8 hours for conventional heating) and therefore was found to be a superior heating mode as compared to conventional heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.