In the fibrotic kidneys, the extent of a formed deleterious microenvironment is determined by cellular mechanical forces. This process requires metabolism for energy; however, how cellular mechanics and metabolism are connected remains unclear. Our proteomics revealed that actin filament binding and cell metabolism are the two most dysregulated events in the fibrotic kidneys. As a prominent actin stabilizer, Calponin 2 (CNN2) is predominantly expressed in fibroblasts and pericytes. CNN2 knockdown preserves kidney function and alleviates fibrosis. Global proteomics profiled that CNN2 knockdown enhanced the activities of the key rate-limiting enzymes and regulators of fatty acid oxidation (FAO) in diseased kidneys. Inhibiting carnitine palmitoyltransferase 1α in the FAO pathway results in lipid accumulation and extracellular matrix deposition in the fibrotic kidneys, which were restored after CNN2 knockdown. In patients, increased serum CNN2 levels are correlated with lipid content. Bioinformatics and chromatin immunoprecipitation showed that CNN2 interactor, estrogen receptor 2 (ESR2) binds peroxisome proliferator-activated receptor-α (PPARα) to transcriptionally regulate FAO downstream target genes expression amid kidney fibrosis. In vitro, ESR2 knockdown repressed the mRNA levels of PPARα and the key genes in the FAO pathway. Consequently, activation of PPARα reduced CNN2-induced matrix inductions. Our results suggest that balancing cell mechanics and metabolism is crucial to develop therapeutic strategies to halt kidney fibrosis.
Acute kidney injury (AKI) and diabetes mellitus (DM) are public health problems that cause a high socioeconomic burden worldwide. In recent years, the landscape of AKI etiology has shifted: Emerging evidence has demonstrated that DM is an independent risk factor for the onset of AKI, while an alternative perspective considers AKI as a bona fide complication of DM. Therefore, it is necessary to systematically characterize the features of AKI in DM. In this review, we summarized the epidemiology of AKI in DM. While focusing on circulation‐ and tissue‐specific microenvironment changes after DM, we described the active cellular and molecular mechanisms of increased kidney susceptibility to AKI under DM stress. We also reviewed the current diagnostic and therapeutic strategies for AKI in DM recommended in the clinic. Updated recognition of the epidemiology, pathophysiology, diagnosis, and medications of AKI in DM is believed to reveal a path to mitigate the frequency of AKI and DM comorbidity that will ultimately improve the quality of life in DM patients.
The smoothened (Smo) receptor facilitates hedgehog signaling between kidney fibroblasts and tubules during acute kidney injury (AKI). Tubule-derived hedgehog is protective in AKI, but the role of fibroblast-derived Smo is unclear. Here, we report that Smo ablation in fibroblasts mitigated tubular cell apoptosis and inflammation, enhanced perivascular mesenchymal activities, and preserved kidney function after AKI. Global proteomics of these kidneys identified extracellular matrix proteins, and nidogen-1 glycoprotein in particular, as key response markers; Intriguingly, Smo was bound to nidogen-1 in cells, suggesting that loss of Smo could impact nidogen-1 accessibility. Phosphoproteomics revealed that the ‘AKI protector’ Wnt pathway was activated in these kidneys, and in vitro and ex vivo, nidogen-1 was able to induce Wnts and repress tubular cell apoptosis. Altogether, our results support that fibroblast-derived Smo dictates AKI fate through cell-matrix interactions, including nidogen-1, and establish a robust resource and path to further dissect AKI pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.