SUMMARY
Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity “risk” gene in the regulation of host defense and inflammation.
With the introduction of immune checkpoint inhibitors into clinical practice, various autoimmune toxicities have been described. Antibodies targeting the receptor:ligand pairing of programmed death receptor-1 (PD-1) and its cognate ligand programmed death-ligand 1 (PD-L1) in rare reports have been associated with autoimmune diabetes mellitus. We report 2 cases of rapid-onset, insulin-dependent, type 1 diabetes mellitus in the setting of administration of nivolumab, a fully human monoclonal antibody to PD-1, and atezolizumab, a humanized monoclonal antibody to PD-L1. This appears to be the first report of autoimmune diabetes mellitus associated with atezolizumab. In addition, we provide a brief review of similar cases reported in the literature and a discussion of potential mechanisms for this phenomenon and propose a diagnostic and treatment algorithm.
Double-stranded (ds) RNA, both synthetic and produced during virus replication, rapidly stimulates MAPK and NF-κB signaling that results in expression of the inflammatory genes inducible nitric oxide synthase, cyclooxygenase 2, and IL-1β by macrophages. Using biochemical and genetic approaches, we have identified the chemokine ligand-binding C-C chemokine receptor type 5 (CCR5) as a cell surface signaling receptor required for macrophage expression of inflammatory genes in response to dsRNA. Activation of macrophages by synthetic dsRNA does not require known dsRNA receptors, as poly(inosinic:cytidylic) acid [poly(I:C)] activates signaling pathways leading to expression of inflammatory genes to similar levels in wild-type and Toll-like receptor 3- or melanoma differentiation antigen 5-deficient macrophages. In contrast, macrophage activation in response to poly(I:C) is attenuated in macrophages isolated from mice lacking CCR5. These findings support a role for CCR5 as a cell surface signaling receptor that participates in activation of inflammatory genes in macrophages in response to the viral dsRNA mimetic poly(inosinic:cytidylic) acid by pathways that are distinct from classical dsRNA receptor-mediated responses.
Viral infection is one environmental factor that may contribute to the initiation of pancreatic β-cell destruction during the development of autoimmune diabetes. Picornaviruses, such as encephalomyocarditis virus (EMCV), induce a pro-inflammatory response in islets leading to local production of cytokines, such as IL-1, by resident islet leukocytes. Furthermore, IL-1 is known to stimulate β-cell expression of iNOS and production of the free radical nitric oxide. The purpose of this study was to determine whether nitric oxide contributes to the β-cells response to viral infection. We show that nitric oxide protects β-cells against virally mediated lysis by limiting EMCV replication. This protection requires low micromolar, or iNOS-derived, levels of nitric oxide. At these concentrations nitric oxide inhibits the TCA enzyme aconitase and complex IV of the electron transport chain. Like nitric oxide, pharmacological inhibition of mitochondrial oxidative metabolism attenuates EMCV-mediated β-cell lysis by inhibiting viral replication. These findings provide novel evidence that cytokine signaling in β-cells functions to limit viral replication and subsequent β-cell lysis by attenuating mitochondrial oxidative metabolism in a nitric oxide-dependent manner.
Encephalomyocarditis virus (EMCV) infection of macrophages results in the expression of a number of inflammatory and anti-viral genes including inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. EMCV-induced macrophage activation has been shown to require the presence of CCR5 and the activation of phosphoinositide-3 kinase (PI3K)-dependent signaling cascades. The purpose of this study was to determine the role of PI3K in regulating the macrophage responses to EMCV. We show that PI3K regulates EMCV-stimulated iNOS and COX-2 expression by two independent mechanisms. In response to EMCV infection, Akt is activated and regulates the translation of iNOS and COX-2 through the mTORC1 complex. The activation of mTORC1 during EMCV infection is CCR5-dependent and appears to function in a manner that promotes the translation of iNOS and COX-2. CCR5-dependent mTORC1 activation functions as an antiviral response, as mTORC1 inhibition increases the expression of EMCV polymerase. PI3K also regulates the transcriptional induction of iNOS and COX-2 in response to EMCV infection by a mechanism that is independent of Akt and mTORC1 regulation. These findings indicate that macrophage expression of the inflammatory genes iNOS and COX-2 occurs via PI3K- and Akt-dependent translational control of mTORC1 and PI3K-dependent, Akt-independent transcriptional control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.