Purpose Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. Experimental Design In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. Results HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo. Conclusions These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM.
A variety of cytoplasmic and nuclear proteins can be modified on serine and threonine residues by O-linked -N-acetylglucosamine (O-GlcNAc), although the effects of this modification on protein and cellular functions are not completely defined. The sugar donor for the O-GlcNAc transferase that catalyzes this post-translational modification is UDP-N-acetylglucosamine (UDPGlcNAc), a product of the hexosamine biosynthesis pathway (HBP). Here, the dynamics of the O-GlcNAc modification are examined in the physiological context of agonist-induced signal transduction using neutrophils. Formylated Met-Leu-Phe (fMLF) is shown to stimulate a rapid and transient increase in protein O-GlcNAcylation in both immunoblot and immunofluorescence imaging assays using O-GlcNAc-specific antibodies. In high performance liquid chromatography analyses of HBP metabolic activity, short term exposure to an exogenous substrate of the HBP, glucosamine (GlcNH 2 ), leads to increased GlcNH 2 6-phosphate and then UDP-GlcNAc levels. The GlcNH 2 treatments also increase O-GlcNAcylation and augment the aforementioned fMLF-associated increase. In functional assays, GlcNH 2 pre-treatment selectively augments fMLFinduced chemotaxis but has little effect on respiratory burst activity. Furthermore, augmenting levels of O-GlcNAc in the absence of agonist is sufficient to stimulate chemotaxis. These data demonstrate that neutrophils possess a functionally significant O-GlcNAcylation pathway that is robustly induced by stimulation with agonist. We propose that O-GlcNAcylation plays an important role in rapid and dynamic neutrophil signal transduction, especially with respect to chemotaxis.
The modification of serine/threonine residues on cytoplasmic and nuclear proteins by N-acetylglucosamine (O-GlcNAc) is suggested to play a role in the regulation of a variety of signal transduction pathways. We have previously shown that glucosamine (GlcNH 2 ), a metabolic precursor of O-GlcNAcylation, increases O-GlcNAc and enhances motility in neutrophils. Here, we extend this correlation by showing that a mechanistically distinct means of increasing O-GlcNAc, achieved by inhibition of O-GlcNAc removal with O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), increases basal cellular motility and directional migration induced by the chemoattractant formyl-methionine-leucine-phenylalanine (fMLP). Furthermore, we demonstrate that O-GlcNAc modulates the activities of signaling intermediates known to regulate neutrophil movement. GlcNH 2 and PUGNAc increase both the basal and fMLP-induced activity of a central mediator of cellular motility, the small GTPase Rac. Phosphoinositide 3-kinase, an important regulator of Rac activity and neutrophil motility, is shown to regulate the signaling pathway on which GlcNH 2 and PUGNAc act. Rac is an important upstream regulatory element in p38 and p44/42 mitogen-activated protein kinase (MAPK) signaling in neutrophils, and these MAPKs are implicated in chemotactic signal transduction. We show that GlcNH 2 and PUGNAc treatment increases p42/44 and p38 MAPK activities and that these increases are associated with activation of upstream MAPK kinases. These data indicate that O-GlcNAcylation is an important signaling element in neutrophils that modulates the activities of several critical signaling intermediates involved in the regulation of cellular movement.Numerous cytoplasmic and nuclear proteins are posttranslationally modified by O-linked N-acetylglucosamine in  linkage to Ser/Thr residues (O-GlcNAc) 1 (1, 2). The sugar donor for the O-GlcNAc transferase (OGT) that catalyzes this modification is a product of glucose metabolism through the hexosamine biosynthesis pathway (HBP) (3). OGT activity is sensitive to changes in substrate availability such that increases in HBP flux, mediated either through glucose or glucosamine (GlcNH 2 ) administration, lead to increased levels of its substrate, UDP-N-acetylglucosamine, which then drives OGT-mediated O-GlcNAcylation (3-7). The dynamic nature of the O-GlcNAc moiety suggests that it may be functionally analogous to phosphorylation in influencing protein functions such as enzymatic activity, protein-protein interactions, and subcellular localization (1, 8 -12 The intracellular signals that mediate PMN motility involve a complex interconnected signaling network that includes phosphoinositide 3-kinases (PI3Ks), small GTP-binding proteins of the Rho family, and mitogen-activated protein kinases (MAPKs). The generation of PI3K␥ knock-out mice and the use of PI3K-specific inhibitors have demonstrated an important role for PI3K and its lipid products in chemotaxis (19 -22). Knock-outs have also been generated for t...
SUMMARY Metastasis of tumor cells to distant organs is the leading cause of death in melanoma. Yet, the mechanisms of metastasis remain poorly understood. One key question is whether all cells in a primary tumor are equally likely to metastasize or whether subpopulations of cells preferentially give rise to metastases. Here, we identified a subpopulation of uveal melanoma cells expressing the multidrug resistance transporter ABCB1 that are highly metastatic compared to ABCB1− bulk tumor cells. ABCB1+ cells also exhibited enhanced clonogenicity, anchorage independent growth, tumorigenicity and mitochondrial activity compared to ABCB1− cells. A375 cutaneous melanoma cells contained a similar subpopulation of highly metastatic ABCB1+ cells. These findings suggest that some uveal melanoma cells have greater potential for metastasis than others, and that a better understanding of such cells may be necessary for more successful therapies for metastatic melanoma.
<p>PDF file - 2.3MB</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.