A series of sulfonamide derivatives HR1-HR5 were synthesized in one step reaction (nucleophilic substitution reaction SN 2 ). Structures of new products were confirmed by elemental and spectral analysis i.e., FTIR, UV, 1 H NMR, 13 C NMR, EIS-MS. In-vitro, antibacterial and anti-fungal activity of newly synthesized compounds was investigated against two bacterial strains: Escherichia coli and Staphylococcus aureus and two fungal strains: Aspergillum flavous and Aspergillum niger. It was found that among all tested compounds HR2 showed good antibacterial activity with MIC 1.13 × 10 -3 and 1.54 × 10 -3 for S. aureus and E. coli respectively. While HR4 showed good antifungal activity with inhibition zone 25.2 ± 0.12 mm (MIC: 71.2 × 10 -3 mol/L) and 17.1 ± 55.5 mm (MIC: 98.9 × 10 -3 mol/L) against A. flavous and A. niger respectively. Developed compounds were also screened for their Invitro antioxidant activity by DPPH radical scavenging assay. All compounds showed moderate activity but potential activity with 15.75% at 6 mM was exhibited by compound HR2.
U.S. President Joe Biden took his oath after being victorious in the controversial U.S. elections of 2020. The polls were conducted over postal ballot due to the coronavirus pandemic following delays of the announcement of the election’s results. Donald J. Trump claimed that there was potential rigging against him and refused to accept the results of the polls. The sentiment analysis captures the opinions of the masses over social media for global events. In this work, we analyzed Twitter sentiment to determine public views before, during, and after elections and compared them with actual election results. We also compared opinions from the 2016 election in which Donald J. Trump was victorious with the 2020 election. We created a dataset using tweets’ API, pre-processed the data, extracted the right features using TF-IDF, and applied the Naive Bayes Classifier to obtain public opinions. As a result, we identified outliers, analyzed controversial and swing states, and cross-validated election results against sentiments expressed over social media. The results reveal that the election outcomes coincide with the sentiment expressed on social media in most cases. The pre and post-election sentiment analysis results demonstrate the sentimental drift in outliers. Our sentiment classifier shows an accuracy of 94.58% and a precision of 93.19%.
With opportunities brought by Internet of Things (IoT), it is quite a challenge to assure privacy preservation when a huge number of resource-constrained distributed devices is involved. Blockchain has become popular for its benefits, including decentralization, persistence, immutability, auditability and consensus. With the implementation of blockchain in IoT, the benefits provided by blockchain can be derived in order to make IoT more efficient and maintain trust. In this paper, we discuss some applications of IoT in different fields and privacy-related issues faced by IoT in resource-constrained devices. We discuss some applications of blockchain in vast majority of areas, and the opportunities it brings to resolve IoT privacy limitations. We, then, survey different researches based on the implementation of blockchain in IoT. The goal of this paper is to survey recent researches based on the implementation of blockchain in IoT for privacy preservation. After analyzing the recent solutions, we see that the blockchain is an optimal way for preventing identity disclosure, monitoring, and providing tracking in IoT.
With the emergence of delay- and energy-critical vehicular applications, forwarding sense-actuate data from vehicles to the cloud became practically infeasible. Therefore, a new computational model called Vehicular Fog Computing (VFC) was proposed. It offloads the computation workload from passenger devices (PDs) to transportation infrastructures such as roadside units (RSUs) and base stations (BSs), called static fog nodes. It can also exploit the underutilized computation resources of nearby vehicles that can act as vehicular fog nodes (VFNs) and provide delay- and energy-aware computing services. However, the capacity planning and dimensioning of VFC, which come under a class of facility location problems (FLPs), is a challenging issue. The complexity arises from the spatio-temporal dynamics of vehicular traffic, varying resource demand from PD applications, and the mobility of VFNs. This paper proposes a multi-objective optimization model to investigate the facility location in VFC networks. The solutions to this model generate optimal VFC topologies pertaining to an optimized trade-off (Pareto front) between the service delay and energy consumption. Thus, to solve this model, we propose a hybrid Evolutionary Multi-Objective (EMO) algorithm called Swarm Optimized Non-dominated sorting Genetic algorithm (SONG). It combines the convergence and search efficiency of two popular EMO algorithms: the Non-dominated Sorting Genetic Algorithm (NSGA-II) and Speed-constrained Particle Swarm Optimization (SMPSO). First, we solve an example problem using the SONG algorithm to illustrate the delay–energy solution frontiers and plotted the corresponding layout topology. Subsequently, we evaluate the evolutionary performance of the SONG algorithm on real-world vehicular traces against three quality indicators: Hyper-Volume (HV), Inverted Generational Distance (IGD) and CPU delay gap. The empirical results show that SONG exhibits improved solution quality over the NSGA-II and SMPSO algorithms and hence can be utilized as a potential tool by the service providers for the planning and design of VFC networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.