Background and objective: Chronic diseases are associated with low-grade inflammation and oxidative damage. Traditional medicines have been used to manage these disorders due to their high polyphenol content and potent antioxidant activity. We evaluated the in-vitro anti-diabetic and antioxidant potential of extracts of several medicinal plants namely, Mangifera indica, Terminalia arjuna, Moringa oleifera, Albizia lebbeck, Terminalia chebula and Hippophae rhamnoides. Methods: Total polyphenol, flavonoid, and saponin contents were estimated by standard methods. Antioxidant activity was measured using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. The anti-diabetic potential was evaluated using in-vitro α-glucosidase inhibition assay. Background and objective: Chronic diseases are associated with low-grade inflammation and oxidative damage. Traditional medicines have been used to manage these disorders due to their high polyphenol content and potent antioxidant activity. We evaluated the in-vitro anti-diabetic and antioxidant potential of extracts of several medicinal plants namely, Mangifera indica, Terminalia arjuna, Moringa oleifera, Albizia lebbeck, Terminalia chebula and Hippophae rhamnoides. Methods: Total polyphenol, flavonoid, and saponin contents were estimated by standard methods. Antioxidant activity was measured using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. The anti-diabetic potential was evaluated using in-vitro α-glucosidase inhibition assay. Results: Terminalia chebula was found to be the richest in both polyphenols (566.5±21.9 µg Gallic acid equivalents/mg of dry weight) and flavonoids (190.67±10.78 quercetin equivalents/mg of dry weight). Extract of Terminalia arjuna was the richest source of saponins (171.92±12.48 μg saponin equivalents/mg of dry weight). All plant extracts showed potent anti-oxidant activity as reflected by their IC50 values in DPPH assay, with Albizia lebbeck (IC50 = 1.35 µg/ml) being the most potent. All plant extracts also showed potent anti-diabetic activity as inferred from their ability to inhibit αglucosidase, the principal enzyme involved in the metabolism of dietary carbohydrates in the intestine. It was observed that all tested extracts were more potent (IC50 2.53 to 227 µg/ml) in comparison to the standard α-glucosidase inhibitor Acarbose (IC50=2.7 mg/ml). Conclusions: The plant extracts of Mangifera indica, Terminalia arjuna, Moringa oleifera, Albizia lebbeck, Terminalia chebula,and Hippophae rhamnoides possess potent antioxidant and α-glucosidase inhibitory potential and can aid in the management of postprandial hyperglycemia and oxidative damage. Conclusions: The plant extracts of Mangifera indica, Terminalia arjuna, Moringa oleifera, Albizia lebbeck, Terminalia chebula,and Hippophae rhamnoides possess potent antioxidant and α-glucosidase inhibitory potential and can aid in the management of postprandial hyperglycemia and oxidative damage.
Breast cancer is among the lethal types of cancer with a high mortality rate, globally. Its high prevalence can be controlled through improved analysis and identification of disease-specific biomarkers. Recently, long non-coding RNAs (lncRNAs) have been reported as key contributors of carcinogenesis and regulate various cellular pathways through post-transcriptional regulatory mechanisms. The specific aim of this study was to identify the novel interactions of aberrantly expressed genetic components in breast cancer by applying integrative analysis of publicly available expression profiles of both lncRNAs and mRNAs. Differential expression patterns were identified by comparing the breast cancer expression profiles of samples with controls. Significant co-expression networks were identified through WGCNA analysis. WGCNA is a systems biology approach used to elucidate the pattern of correlation between genes across microarray samples. It is also used to identify the highly correlated modules. The results obtained from this study revealed significantly differentially expressed and co-expressed lncRNAs and their cisand trans-regulating mRNA targets which include RP11-108F13.2 targeting TAF5L, RPL23AP2 targeting CYP4F3, CYP4F8 and AL022324.2 targeting LRP5L, AL022324.3, and Z99916.3, respectively. Moreover, pathway analysis revealed the involvement of identified mRNAs and lncRNAs in major cell signalling pathways, and target mRNAs expression is also validated through cohort data. Thus, the identified lncRNAs and their target mRNAs represent novel biomarkers that could serve as potential therapeutics for breast cancer and their roles could also be further validated through wet labs to employ them as potential therapeutic targets in future.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Background: Helicobacter pylori infection and its treatment still remains a challenge to human health worldwide. A variety of antibiotics and combination therapies are currently used to treat H. pylori induced ulcers and carcinoma; however, no effective treatment is available to eliminate the pathogen from the body. Additionally, antibiotic resistance is also one of the main reasons for prolonged and persistent infection. Aim of the study: Until new drugs are available for this infection, vaccinology seems the only alternative opportunity to exploit against H. pylori induced diseases. Methods: Multiple epitopes prioritized in our previous study have been tested for their possible antigenic combinations, and results in 169-mer and 183-mer peptide vaccines containing the amino acid sequences of 3 and 4 epitopes respectively, along with adjuvant (Cholera Toxin Subunit B adjuvant at 5’ end) and linkers (GPGPG and EAAAK). Results: Poly-epitope proteins proposed as potential vaccine candidates against H. pylori include SabAHP0289-Omp16-VacA (SHOV), VacA-Omp16-HP0289-FecA (VOHF), VacA-Omp16-HP0289-SabA (VOHS), VacA-Omp16-HP0289-BabA (VOHB), VacA-Omp16-HP0289-SabA-FecA (VOHSF), VacAOmp16-HP0289-SabA-BabA (VOHSB) and VacA-Omp16-HP0289-BabA-SabA (VOHBS). Structures of these poly-epitope peptide vaccines have been modelled and checked for their affinity with HLA alleles and receptors. These proposed poly-epitope vaccine candidates bind efficiently with A2, A3, B7 and DR1 superfamilies of HLA alleles. They can also form stable and significant interactions with Toll-like receptor 2 and Toll-like receptor 4. Conclusion: Results suggest that these multi-epitopic vaccines can elicit a significant immune response against H. pylori and can be tested further for efficient vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.