Cortical gyrification of the brain represents the folding characteristic of the cerebral cortex. How the brain cortical gyrification changes from childhood to old age in healthy human subjects is still unclear. Additionally, studies have shown regional gyrification alterations in patients with major psychiatric disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ). However, whether the lifespan trajectory of gyrification over the brain is altered in patients diagnosed with major psychiatric disorders is still unknown. In this study, we investigated the trajectories of gyrification in three independent cohorts based on structural brain images of 881 subjects from age 4 to 83. We discovered that the trajectory of gyrification during normal development and aging was not linear and could be modeled with a logarithmic function. We also found that the gyrification trajectories of patients with MDD, BD and SCZ were deviated from the healthy one during adulthood, indicating altered aging in the brain of these patients.
Cerebellar white matter (WM) connections to the central nervous system are classified functionally into the Spinocerebellar (SC), vestibulocerebellar (VC), and cerebrocerebellar subdivisions. The SC pathways project from spinal cord to cerebellum, whereas the VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC) pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC) pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI). Ten right-handed healthy subjects (7 males and 3 females, age range 20–51 years) were studied. DT-MRI data were acquired with a voxel size = 2 mm × 2 mm × 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC), parieto-ponto-cerebellar (PPC), temporo-ponto-cerebellar (TPC) and occipito-ponto-cerebellar (OPC). The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas) were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM), cerebral WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~25.8 ± 7.3 mL, or a percentage of 1.6 ± 0.45 of the total intracranial volume (ICV).
Background
Neuroanatomical abnormalities in Bipolar disorder (BD) have previously been reported. However, the utility of these abnormalities in distinguishing individual BD patients from Healthy controls and stratify patients based on overall illness burden has not been investigated in a large cohort.
Methods
In this study, we examined whether structural neuroimaging scans coupled with a machine learning algorithm are able to distinguish individual BD patients from Healthy controls in a large cohort of 256 subjects. Additionally, we investigated the relationship between machine learning predicted probability scores and subjects’ clinical characteristics such as illness duration and clinical stages. Neuroimaging scans were acquired from 128 BD patients and 128 Healthy controls. Gray and white matter density maps were obtained and used to ‘train’ a relevance vector machine (RVM) learning algorithm which was used to distinguish individual patients from Healthy controls.
Results
The RVM algorithm distinguished patients from Healthy controls with 70.3 % accuracy (74.2 % specificity, 66.4 % sensitivity, chi-square p<0.005) using white matter density data and 64.9 % accuracy (71.1 % specificity, 58.6 % sensitivity, chi-square p<0.005) with gray matter density. Multiple brain regions – largely covering the fronto – limbic system were identified as ‘most relevant’ in distinguishing both groups. Patients identified by the algorithm with high certainty (a high probability score) – belonged to a subgroup with more than ten total lifetime manic episodes including hospitalizations (late stage).
Conclusions
These results indicate the presence of widespread structural brain abnormalities in BD which are associated with higher illness burden – which points to neuroprogression.
These preliminary findings support that modulating excitatory input of the corticospinal tracts on spinal circuits may be a promising strategy in improving arm and hand functions in persons with incomplete tetraplegia. Further study is needed to explore the underlying mechanisms of recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.