A high performance and fast response sensor was fabricated as a monitoring system for the determination of butylated hydroxyanisole (BHA) in food and wastewater samples. In this regard, a carbon paste electrode (CPE) that was amplified with platinum-decorated single wall carbon nanotubes (Pt/SWCNTs) and 1-Butyl-3-methylimidazolium chloride ([C4mim][Cl]) was investigated as a new electroanalytical sensor for the monitoring of BHA in aqueous solution. The [C4mim][Cl]/Pt/SWCNTs/CPE offered an excellent catalytic activity on oxidation signal of BHA and enhanced its oxidation current about 5.51 times. In the final step, the standard addition results confirmed the powerful ability of [C4mim][Cl]/Pt/SWCNTs/CPE to the monitoring of BHA in different water and food samples with acceptable recovery data.
An electrochemical sensor was introduced as an analytical tool for monitoring caffeic acid in food samples. This analytical tool was amplified by cadmium oxide decorated on single wall carbon nanotubes as a new catalyst and showed a powerful ability to sensing of caffeic acid in food products. The presence of cadmium oxide decorated on single wall carbon nanotubes catalyst improved the oxidation signal of caffeic acid about 2.4 times at optimum conditions. The pH investigation confirmed that the redox reaction of caffeic acid was pH dependent and showed maximum sensitivity at pH 7.0. The paste electrode amplified with cadmium oxide decorated on single wall carbon nanotubes was successfully monitored caffeic acid in the concentration range 0.02–200 µM with a detection limit of 9.0 nM, respectively. The standard addition strategy showed a recovery range of 97.96 – 102.59 % to the measurement of caffeic acid in fruit juice, white and red wine that was acceptable for the fabrication of a new analytical tool in food monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.