During harvesting, grain, straw, and chaff with weed seeds are separated. The chaff is returned to the fields, resulting in weed problems in the subsequent crops. We estimated the fraction of weed seeds a combine harvester could potentially harvest and used various methods to collect the chaff and treat it with heat to kill weed seeds or reduce weed seed germination. Chaff with weed seeds was placed on top of the straw and afterwards baled with the straw as a method to remove weed seeds from the field. We exposed chaff with weed seeds to exhaust gas with various temperatures and durations to study whether this heating method could be used to reduce the input of viable weed seeds to the soil during harvesting. By collecting the shed weed seeds during the growing season, we estimated that a combine harvester could potentially harvest 41%, 11%, and 100% of the seeds produced in the growing season by Bromus hordeaceus, Cirsium arvense, and Galium aparine, respectively. When the chaff was placed on top of the straw, 45% of the weed seeds stayed in the chaff fraction on top of the straw swath after one day, 35% got into the straw swath, and 20% past through the swath to the ground. Therefore, baling straw with chaff placed on the top only had a limited effect on reducing weed seed infestation. The study showed that thermal weed seed control during harvesting could potentially be applicable and incorporated in an integrated weed management approach.
Blackgrass (Alopecurus myosuroides Huds.) and silky windgrass [Apera spica-venti (L.) P. Beauv.] are becoming a significant problem in Europe. Due to the development of herbicide-resistant biotypes and unwanted side effects of herbicides, there is a need for new integrated weed management strategies to control weeds. Therefore, reducing weed infestations by targeting seed production during crop harvest should be considered. In 2017 and 2018, we estimated the fraction of the total seed production of A. myosuroides and A. spica-venti in a field that potentially could be collected by a grain harvester during winter wheat (Triticum aestivum L.) harvest. Twenty plants of each species were surrounded by a porous net before flowering to trap shed seeds during reproductive development. Seeds were collected and counted weekly up until and immediately before wheat harvest, and the ratio of harvestable seeds to shed seeds during the growing season was determined. Alopecurus myosuroides produced on average 953 seeds plant−1 in 2017 and 3,337 seeds plant−1 in 2018. In 2017 and 2018, 29% and 37% of the total A. myosuroides seeds produced, respectively, were retained on plants at maturity. Apera spica-venti produced on average 1,192 seeds plant−1 in 2017 and 5,678 seeds plant−1 in 2018, and retained 53% and 16% of the seeds at harvest, respectively. If a grain harvester potentially collected approximately 30% of the total seed production of the two grass weeds and removed or killed them, it would reduce seed input to the soil seedbank. However, such methods cannot stand alone to reduce weed pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.