This work focussed on the synthesis of a new catalytic material isinglass (IG)-based Fe 3 O 4 @GA@IG core/shell magnetic nanoparticles and the investigation of its catalytic activity in two important multicomponent reactions. Fe 3 O 4 nanoparticles were prepared using a simple coprecipitation method and then coated with IG consisting predominantly of the protein collagen in the presence of glutaraldehyde as a cross-linking agent. The obtained hybrid material has been characterized by Fourier transform infrared analysis, scanning electron microscopy, transmission electron microscopy (TEM), vibrating sample magnetometry, energy-dispersive X-ray, X-ray diffraction (XRD), and Brunauer–Emmett–Teller analyses. The results of XRD analysis implied that the prepared nanocomposite consists of two compounds of crystalline magnetite and amorphous IG, and the formation of its core/shell structure had been confirmed by TEM images. The catalytic performance of the as-prepared core/shell bionanocatalyst was evaluated for the first time in the synthesis of 1,4-dihydropyridine and 4 H -pyran derivatives under sonication in ethanol. This core/shell structure because of the superparamagnetic property of Fe 3 O 4 and unique properties of IG as a bifunctional biocatalyst offers a high potential for many catalytic applications. Recycling study revealed that no significant decrease in the catalytic activity was observed even after six runs.
A new magnetically separable Fe3O4@IM nano-biocatalyst was synthesized using natural Irish moss (IM) and its catalytic activity was studied in the synthesis of imidazopyrimidine derivatives.
A series of 4H-chromone-1,2,3,4-tetrahydropyrimidine-5-carboxylates derivatives were synthesized via a three component one-pot condensation of chromone-3-carbaldehyde, alkyl acetoacetate, and urea or thiourea, using MCM-41-SOH as efficient nanocatalysts and evaluated for their anticancer activity using a combined in silico docking and molecular dynamics protocol to estimate the binding affinity of the title compounds with the Bcr-Abl oncogene. Two programs, AutoDock 4 and AutoDock Vina software were applied to dock the target protein with synthesized compounds and ATP. AutoDock runs resulted in binding energy scores from -7.8 to -10.16 kcal/mol for AutoDock 4 and -6.9 to -8.5 (kcal/mol) for AutoDock Vina. Furthermore, molecular dynamics (MD) simulations are performed using Gromacs for up to 20 ns simulation time investigating the stability of a ligand-protein complex. Finally, a theoretical experiment using MD simulation for 10 ns was performed without defining the initial coordinates, and the affinity binding of ligand to receptors was directly studied, which revealed that the ligand approaches the active sites. The relative free binding energy for the structure 06 (S06), which has the highest binding energy in Autodock 4 and Autodock Vina (-10.10 and -8.5 kcal/mol, respectively), was also evaluated by molecular mechanics (MM) with Poisson-Boltzmann (PB) and a surface area solvation (MM-PBSA) method using g_mmpbsa tools for the last 15 ns MD. On the basis of binding energy scores, a negative binding energy value of 73.6 kcal/mol, S06, was recognized as the dominant potential inhibitors. The cytotoxic properties of S06 was evaluated against three cell lines, acute T cell leukemia (Jurkat), human chronic myelogenous leukemia, (K562) and human foreskin fibroblast (Hu02) using the microculture tetrazolium test MTT assay. Cisplatin was used as the reference agent. The results indicated that S06 has a higher safety index (SI = 0.73, IC50 = 152.64 μg/mL for Jurkat and IC50 = 110.25 μg/mL for Hu02, P < 0.05 means ± SD for four independent experiments) compared to cisplatin (SI = 0.56, IC50 = 8.86 μg/mL for Jurkat and IC50 = 4.96 μg/mL for Hu02). The in silico results indicated that the proposed structures, which have no toxic effects, are potential tyrosine kinase inhibitors (TKIs) that target Bcr-Abl and thus prevent uncontrolled cell growth (proliferation) but not necessarily cell death (apoptosis) and might potentially constitute an interesting novel class of targeted antileukemic drugs, which deserve further studies.
Isinglass, derived from swim bladders of Caspian Sea fish and consisting predominantly of protein collagen, was found to be an effective, easily accessible heterogeneous biocatalyst for the synthesis of biologically important functionalized spirooxindoles and spiroacenaphthylenes in water. This facile and efficient one-pot, three-component synthesis route involving isatin or acenaphthenequinone, activated methylene reagent, and 1,3-dicarbonyl compounds provides a new strategy giving rise to spiro derivatives in quantitative yields in very short reaction times. Graphical abstract N CN X O O R 2 R 1 N O X H2N R 2 R 1 O O O O H2O, 60 °C H2O, 60 °C O O O O X H2N O 6 2 3 4 5 1 X= CN, CO2Et R 1 = H, Me, Et, Bn, Ph R 2 = H, Cl, Br, NO2 IG IG
A well-established strategy to synthesize heterogeneous, metal-organic framework (MOF) catalysts that exhibit nanoconfinement effects, and specific pores with highly-localized catalytic sites, is to use organic linkers containing organocatalytic centers. Here, we report that by combining this linker approach with reticular chemistry, and exploiting three-dimensioanl (3D) MOF-structural data from the Cambridge Structural Database, we have designed four heterogeneous MOF-based catalysts for standard organic transformations. These programmable MOFs are isoreticular versions of pcu IRMOF-16, fcu UiO-68 and pillared-pcu SNU-8X, the three most common topologies of MOFs built from the organic linker p,p'-terphenyldicarboxylic acid (tpdc). To synthesize the four squaramide-based MOFs, we designed and synthesized a linker, 4,4'-((3,4dioxocyclobut-1-ene-1,2-diyl)bis(azanedyil))dibenzoic acid (Sq_tpdc), which is identical in directionality and length to tpdc but which contains organocatalytic squaramide centers. Squaramides were chosen because their immobilization into a framework enhances its reactivity and stability while avoiding any self-quenching phenomena. Therefore, the four MOFs share the same organocatalytic squaramide moiety, but confine it within distinct pore environments. We then evaluated these MOFs as heterogeneous H-bonding catalysts in organic transformations: a Friedel-Crafts alkylation and an epoxide ring-opening. Some of them exhibited good performance in both reactions but all showed distinct catalytic profiles that reflect their structural differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.