The ever-increasing quest for data-level parallelism and variable precision in ubiquitous multimedia and Deep Neural Network (DNN) applications has motivated the use of Single Instruction, Multiple Data (SIMD) architectures. To alleviate energy as their main resource constraint, approximate computing has re-emerged, albeit mainly specialized for their Application-Specific Integrated Circuit (ASIC) implementations. This paper, presents for the first time, an SIMD architecture based on novel multiplier and divider with tunable accuracy, targeted for Field-Programmable Gate Arrays (FPGAs). The proposed hybrid architecture implements Mitchell's algorithms and supports precision variability from 8 to 32 bits. Experimental results obtained from Vivado, multimedia and DNN applications indicate superiority of proposed architecture (both SISD and SIMD) over accurate and state-of-the-art approximate counterparts. In particular, the proposed SISD divider outperforms the accurate Intellectual Property (IP) divider provided by Xilinx with 4× higher speed and 4.6×less energy and tolerating only <0.8% error. Moreover, the proposed SIMD multiplier-divider supersede accurate SIMD multiplier by achieving up to 26%, 45%, 36%, and 56% improvement in area, throughput, power, and energy, respectively.
While the transistor density continues to grow exponentially in Field-Programmable Gate Arrays (FPGAs), the increased leakage current of CMOS transistors act as a power wall for the aggressive integration of transistors in a single die.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.