In this paper, we use a numerical method for solving the nonlinear Black–Scholes partial differential equation of the European option under transaction costs, which is based on the nonstandard discretization of the spatial derivatives. The proposed scheme, in addition to the unconditional positivity, is stable, consistent, and monotone. In order to illustrate the efficiency of the new method, numerical results have been performed by four models.
In this paper, we evaluate and discuss different numerical methods to solve the Black–Scholes equation, including the θ-method, the mixed method, the Richardson method, the Du Fort and Frankel method, and the MADE (modified alternating directional explicit) method. These methods produce numerical drawbacks such as spurious oscillations and negative values in the solution when the volatility is much smaller than the interest rate. The MADE method sacrifices accuracy to obtain stability for the numerical solution of the Black–Scholes equation. In the present work, we improve the MADE scheme by using non-standard finite difference discretization techniques in which we use a non-local approximation for the reaction term (we call it the MMADE method). We will discuss the sufficient conditions to be positive of the new scheme. Also, we show that the proposed method is free of spurious oscillations even in the presence of discontinuous initial conditions. To demonstrate how efficient the new scheme is, some numerical experiments are performed at the end.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.