In practice the states of a system are not directly available that are difficult to measure by sensors. This article proposes an observer‐based controller for fractional‐order neutral‐type delay systems with actuator saturation. A feedback algorithm is constructed by applying the Lyapunov direct method. Moreover, based on the observer, the gains of controller and observer are determined by solving a set of nonlinear matrix inequalities. Therefore, an iterative algorithm including the convex optimization is also proposed to solve the inequalities. An example is given to illustrate the theoretical results.
This article investigates the robust stability of fractional order neutral-type systems involving nonlinear perturbations and time varying delays in the presence of input saturation. Design criteria, expressed in terms of linear matrix inequalities, are derived with the aid of the Lyapunov Krasovskii functional for the state feedback controller. Based on the cone complementarity linearization method, an optimization problem is also formulated for finding the controller gains subject to maximizing the domain of attraction. The main results are confirmed by numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.