Background
Many efforts are being made around the world to discover the vaccine against COVID-19. After discovering the vaccine, its acceptance by individuals is a fundamental issue for disease control. This study aimed to examine COVID-19 vaccination intention determinants based on the protection motivation theory (PMT).
Methods
We conducted a cross-sectional study in the Iranian adult population and surveyed 256 study participants from the first to the 30th of June 2020 with a web-based self-administered questionnaire. We used Structural Equation Modeling (SEM) to investigate the interrelationship between COVID-19 vaccination intention and perceived susceptibility, perceived severity, perceived self-efficacy, and perceived response efficacy.
Results
SEM showed that perceived severity to COVID-19 (β = .17, p < .001), perceived self-efficacy about receiving the COVID-19 vaccine (β = .26, p < .001), and the perceived response efficacy of the COVID-19 vaccine (β = .70, p < .001) were significant predictors of vaccination intention. PMT accounted for 61.5% of the variance in intention to COVID-19 vaccination, and perceived response efficacy was the strongest predictor of COVID-19 vaccination intention.
Conclusions
This study found the PMT constructs are useful in predicting COVID-19 vaccination intention. Programs designed to increase the vaccination rate after discovering the COVID-19 vaccine can include interventions on the severity of the COVID-19, the self-efficacy of individuals receiving the vaccine, and the effectiveness of the vaccine in preventing infection.
Hierarchical Bayesian log-linear models for Poisson-distributed response data, especially Besag, York and Mollié (BYM) model, are widely used for disease mapping. In some cases, due to the high proportion of zero, Bayesian zero-inflated Poisson models are applied for disease mapping. This study proposes a Bayesian spatial joint model of Bernoulli distribution and Poisson distribution to map disease count data with excessive zeros. Here, the spatial random effect is simultaneously considered into both logistic and log-linear models in a Bayesian hierarchical framework. In addition, we focus on the BYM2 model, a re-parameterization of the common BYM model, with penalized complexity priors for the latent level modeling in the joint model and zero-inflated Poisson models with different type of zeros. To avoid model fitting and convergence issues, Bayesian inferences are implemented using the integrated nested Laplace approximation (INLA) method. The models are compared according to the deviance information criterion and the logarithmic scoring. A simulation study with different proportions of zero exhibits INLA ability in running the models and also shows slight differences between the popular BYM and BYM2 models in terms of model choice criteria. In an application, we apply the fitting models on male breast cancer data in Iran at county level in 2014.
Measurement equivalence is a necessary assumption for meaningful comparison of pediatric quality of life rated by children and parents. In this study, differential item functioning (DIF) analysis is used to examine whether children and their parents respond consistently to the items in the KINDer Lebensqualitätsfragebogen (KINDL; in German, Children Quality of Life Questionnaire). Two DIF detection methods, graded response model (GRM) and ordinal logistic regression (OLR), were applied for comparability. The KINDL was completed by 1,086 school children and 1,061 of their parents. While the GRM revealed that 12 out of the 24 items were flagged with DIF, the OLR identified 14 out of the 24 items with DIF. Seven items with DIF and five items without DIF were common across the two methods, yielding a total agreement rate of 50 %. This study revealed that parent proxy-reports cannot be used as a substitute for a child's ratings in the KINDL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.