Graphene-ZnO nanohybrid thin films were prepared by spray pyrolysis technique at 350 °C. Different graphene nanoplate concentrations of 0.1, 0.2, 0.3, 0.4, and 0.5 wt.% were used to deposit films on quartz substrates. The Structural and optical properties of the nanohybrid films have been investigated. X-ray diffraction XRD results show that the films have a hexagonal wurtzite polycrystalline structure and no secondary phases were observed. The structural parameters of crystallite size, dislocation density, and microstrain have indicated that the addition of graphene has a strong effect on the microstructure of zinc oxide films. Surface morphological analysis of the ZnO-graphene films reveals that the graphene content effectively modifies the morphologies and grain growth of the ZnO microstructure. It was also found from the optical properties that the maximum energy gap for pure ZnO films was 3.4 eV which decreases to 2.7 eV as the concentration of graphene increases to 0.5 wt.%. Results confirmed that graphene can be used as an efficient modifier for band gap engineering and the microstructure of ZnO thin films for enhanced photovoltaic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.