Inverse opal zirconia is useful in many ways because of their ability to combine several chemical and physical properties. In this research, polystyrene template was fabricated by self-assembly method and inverse opal zirconia was prepared by colloidal crystal-templating method. The process of preparation of inverse opal zirconia as well as effects on morphology and phase of as-prepared inverse opal zirconia were studied. The results showed precursor ratio of zirconium acetate and methanol, mass ratio of polystyrene templates and precursor and dipping times had remarkable influence on morphology of inverse opal zirconia. When the precursor ratio was 1:1; the mass ratio was 1:15 and dipped once, much better morphology of inverse opal zirconia was obtained. The mass ratio, sintering temperature and holding time had significant effect on crystallization of zirconia. Pure phase zirconia could be obtained when sintered at 600 o C, holding time was 2h and the mass ratio was 1:1. A distinguished single stop band in the visible region of the spectrum and unique structural color were observed in inverse opal zirconia, which will make this material promising candidate for novel pigment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.