This paper focus on the thermal pyrolysis of used tyre with different catalysts at a temperature 550°C and at a heating rate of 15°C/min. The effect of process parameters on liquid yield, char formation and volatiles were also studied. In the present work, thermal pyrolysis of waste tyre samples with two selected catalysts, namely Jordan zeolite (zeolite Jo) and activated alumina was carried out in a fixed-bed reactor. The catalyst was mixed with feedstock in different percentages (10%, 15%, 25% and 35% w/w). The effects of catalysts and their ratio on the pyrolysis product oil were investigated and the results were compared with the results of experiments performed without catalyst under the same conditions (temperature 550°C at a heating rate of 150C/min). The maximum liquid yield obtained from pyrolysis of waste tyre via catalyst were found as 49.32% and 51.54% on using activated alumina and zeolite Jo as catalysts, respectively, while these values were 42.48%, without catalyst. The mass loss of tyre was examined using the thermo gravimetric analysis profiles (TGA) at heating rate of 15°C/min in air atmosphere from room temperature up to 600°C. The tyre pyrolysis liquid product has been characterized including fuel properties, proximate analysis, and ultimate analysis and FTIR. Fuel properties show that it can be used as liquid fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.