Many financial and economic time series undergo episodes where the behaviour of the series seems to change quite dramatically. Such phenomena’s are referred to as regime shifts and cannot be modelled by a single equation linear model. Therefore to overcome this problem a nonlinear time series model is typically designed to accommodate this nonlinear feature in the data. In this paper, we use a univariate 2-regime Markov switching autoregressive model (MSAR) to capture regime shifts behaviour in both the mean and the variance in Malaysia ringgit exchange rates against four other countries namely the British pound sterling, the Australian dollar, the Singapore dollar and the Japanese yen between 1990 and 2005. The MS-AR model is found to successfully capture the timing of regime shifts in the four series and this regime shifts occurred because of financial crises such as the European financial crisis in 1992 and the Asian financial crisis in 1997. Furthermore, the significant result of the likelihood ratio test (LR test) justified the used of nonlinear MS-AR model rather than linear AR model.
In this paper, a cross-sectional samples data of 115 Malaysian stocks have been employed to compare both Data Envelopment Analysis (DEA) method and Stochastic Frontier Analysis (SFA) method. These approaches are used to provide a review of frontier conceptual measurement, strength and limitation of the parametric and non-parametric models. Stochastic frontier production function of Cobb-Douglas type was utilized for the estimation. The function was estimated using the maximum likelihood estimation technique. Two models in DEA, DEA-CCR and DEA-BCC are applied in this study and the ranking correlation between SFA method and both models DEA are determined by using the Spearman rank method. The result revealed using SFA, the mean technical efficiency of sample consumer product companies is 37.5% and implies that companies operating at means level of technical efficiency could produce 80.1% more output for given level of inputs if they become technically more efficient. From empirical results of the SFA method, we determined that the deviations from the efficient frontiers of production functions are largely attributed to inefficiency effects (technical inefficiency). Finally, the findings also showed that the difference in ranking stocks performance using DEA-CCR, DEA-BCC and SFA methods. The main contribution of the paper is showing the comparative performance based on both model, DEA and SFA method using financial ratio.
Principal component analysis reduces dimensionality; however, uncorrelated components imply the existence of variables with weights of opposite signs. This complicates the application in data envelopment analysis. To overcome problems due to signs, a modification to the component axes is proposed and was verified using Monte Carlo simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.