Lignin is a natural and renewable organic compound that can be easily obtained from spent pulping liquors. It can be used as feedstock for making wood adhesives. Nonetheless, lignins need to be modified to enhance reactivity prior to being used as feedstock for making wood adhesives. Appropriate crosslinkers are also needed to ensure the bonding quality of the ligninbased wood adhesives. In the present review, the drawbacks of using lignins alone as wood adhesives, modifications to enhance the reactivity of lignins and production of lignin-based copolymer adhesives for composite wood panels are reviewed and discussed. The objective of this review is to provide background information about the recent status on the development of lignin-based copolymer adhesives for the production of composite wood panels as well as the future prospects of these adhesives in industry. Several modifications such as demethylation, oxidation, methylolation, phenolation, reduction and hydrolysis have shown promising results for enhancing the reactivity of lignins. Several crosslinkers such as phenolic resin, tannin, polymethylene polyphenyl isocyanate (pMDI), furfural and ethylenimine are capable of copolymerizing with lignins to produce lignin-based wood adhesives. The performance of composite wood panels bonded with modified lignin-based copolymer adhesives have been shown to meet the requirements of relevant standards. The main obstacles for the composite wood panels industry to widely adopt to lignin-based copolymer adhesives are the economic and technical issues. Nevertheless, lignin modification methods are proving to enhance the reactivity of lignins and the optimization in such modification methods would justify the economic issue. Together with the public awareness on the safety, health and environment concerns, the utilization of lignin-based adhesives in the composite wood panels industry is feasible.
Wood is a versatile material that is used for various purposes due to its good properties, such as its aesthetic properties, acoustic properties, mechanical properties, thermal properties, etc. Its poor dimensional stability and low natural durability are the main obstacles that limit its use in mechanical applications. Therefore, modification is needed to improve these properties. The hydrothermal modification of wood exposes wood samples to elevated temperatures and pressure levels by using steam, water, or a buffer solution as the treating medium, or by using superheated steam. Abundant studies regarding hydrothermally treated wood were carried out, but the negative effect on the wood’s strength is one of the limitations. This is a method that boosts the dimensional stability and improves the decay resistance of wood with minimal decrements of the strength properties. As an ecofriendly and cost-effective method, the hydrothermal modification of wood is also a promising alternative to conventional chemical techniques for treating wood. Researchers are attracted to the hydrothermal modification process because of its unique qualities in treating wood. There are many scientific articles on the hydrothermal modification of wood, and many aspects of hydrothermal modification are summarized in review papers in this field. This paper reviews the hydrothermally modified mechanical properties of wood and their potential applications. Furthermore, this article reviews the effects of hydrothermal modification on the various properties of wood, such as the dimensional stability, chemical properties, and durability against termites and fungi. The merits and demerits of hydrothermal wood modification, the effectiveness of using different media in hydrothermal modification, and its comparison with other treating techniques are discussed.
Effect of oil heat treatment on physical properties of 3 years old Gigantochloa scortechinii Gamble bamboo was investigated. The bamboo splits within epidermis were heat-treated using crude palm oil at temperature 140°C, 180°C and 220°C for duration 30 and 60 min. The objectives were to determine the effect of oil heat treatment on physical properties of the heat-treated bamboo and to assess any significant changes on physical properties of the heat-treated bamboo. Untreated bamboo was used as comparison for each treatment conditions. The results indicated equilibrium moisture content (EMC), density and volumetric shrinkage of heat-treated bamboo decreased as the treatment temperature and time increases. The EMC and density reduction were 4-27% and 11-18% approximately. This study indicated that bamboo became less hygroscopic when subjected to higher temperature and longer heat treatment time. Volumetric shrinkage of bamboo was also reduced by the treatment conditions (17-53%). The shrinkage properties of bamboo were inversely proportional to the treatment conditions, indicating that oil heat treatment successfully imparts the dimensional stability of the bamboo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.