h i g h l i g h t s Effects of oil heat treatment on wood are reviewed. Advantages and disadvantages of using vegetables are discussed. Different types of treatment procedures are compared. Factors governing the treatment effectiveness are listed. Potential applications of oil heat treated wood are discussed.
Lignin is a natural and renewable organic compound that can be easily obtained from spent pulping liquors. It can be used as feedstock for making wood adhesives. Nonetheless, lignins need to be modified to enhance reactivity prior to being used as feedstock for making wood adhesives. Appropriate crosslinkers are also needed to ensure the bonding quality of the ligninbased wood adhesives. In the present review, the drawbacks of using lignins alone as wood adhesives, modifications to enhance the reactivity of lignins and production of lignin-based copolymer adhesives for composite wood panels are reviewed and discussed. The objective of this review is to provide background information about the recent status on the development of lignin-based copolymer adhesives for the production of composite wood panels as well as the future prospects of these adhesives in industry. Several modifications such as demethylation, oxidation, methylolation, phenolation, reduction and hydrolysis have shown promising results for enhancing the reactivity of lignins. Several crosslinkers such as phenolic resin, tannin, polymethylene polyphenyl isocyanate (pMDI), furfural and ethylenimine are capable of copolymerizing with lignins to produce lignin-based wood adhesives. The performance of composite wood panels bonded with modified lignin-based copolymer adhesives have been shown to meet the requirements of relevant standards. The main obstacles for the composite wood panels industry to widely adopt to lignin-based copolymer adhesives are the economic and technical issues. Nevertheless, lignin modification methods are proving to enhance the reactivity of lignins and the optimization in such modification methods would justify the economic issue. Together with the public awareness on the safety, health and environment concerns, the utilization of lignin-based adhesives in the composite wood panels industry is feasible.
Oil palm empty fruit bunch (EFB) is the most significant waste generated from the agricultural industry in Malaysia. Composting is one of the potential approaches to utilize EFB. However, composting of EFB is a time-consuming process, thus impractical for industrial application. The composting process can be shortened by introducing competent fungi into an optimal EFB composting system. This study was conducted to isolate and identify competent fungi that can naturally compost EFB. Samplings were carried out at eight different time points over a 20-weeks experimental period. The physical properties of EFB samples such as pH, residual oil content, and moisture content were measured and the EFB composting process that was indicated by the contents of cellulose, hemicellulose, and lignin were assessed. The fungal growth, distribution, and lignocellulolytic enzyme activities were evaluated. The results indicated that the changes in physical properties of EFB were correlated to the fungal growth. The gradual reduction in moisture content and residual oil, and the increment in pH values in EFB samples throughout the experimental period resulted in reduced fungal growth and diversity. Such phenomenon delayed EFB composting process as revealed by the changes in EFB lignin, hemicellulose, and cellulose contents. The most dominant and resilient fungi (Lichtheimia ramosa and Neurospora crassa) survived up to 16 weeks and were capable of producing various lignocellulolytic enzymes. Further understanding of these factors that would contribute to effective EFB composting could be useful for future industrial applications.
The chemical properties, dimensional stability, mechanical strength and termite resistance of urea formaldehyde (UF) bond rubberwood (RW) particleboard (PB) were assessed after a two-step oil heat treatment (OHT). The PB was immersed in palm oil before heating to 180, 200, and 220°C in a laboratory oven for 2 h. Anti-swelling efficiency (ASE) and water repellency efficiency (WRE) as well as bending (MOE, MOR) and internal bonding strength (IB) were determined. Resistance against a subterranean termite,Coptotermes curvignathusHolmgren, was tested. The degradation of hemicelluloses and cellulose, that are mainly responsible for wood wetting processes, was confirmed by Fourier transform infrared (FTIR) spectra. Formation of an elevated cross-linking density in lignin also contributed to the dimensional stability, where 93.6% ASE and 46.3% WRE were achieved in the samples treated at 220°C. Mechanical properties of treated samples were inferior to the control samples due to hemicelluloses degradation and breakage of the UF bonding network. A significant improvement in termite resistance has been found in the treated samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.