Nociceptors are a subpopulation of dorsal root ganglia (DRG) neurons that detect noxious stimuli and signal pain. Veratridine (VTD) is a voltage-gated sodium channel (VGSC) modifier that is used as an “agonist” in functional screens for VGSC blockers. However, there is very little information on VTD response profiles in DRG neurons and how they relate to neuronal subtypes. Here we characterised VTD-induced calcium responses in cultured mouse DRG neurons. Our data shows that the heterogeneity of VTD responses reflects distinct subpopulations of sensory neurons. About 70% of DRG neurons respond to 30–100 μM VTD. We classified VTD responses into four profiles based upon their response shape. VTD response profiles differed in their frequency of occurrence and correlated with neuronal size. Furthermore, VTD response profiles correlated with responses to the algesic markers capsaicin, AITC and α, β-methylene ATP. Since VTD response profiles integrate the action of several classes of ion channels and exchangers, they could act as functional “reporters” for the constellation of ion channels/exchangers expressed in each sensory neuron. Therefore our findings are relevant to studies and screens using VTD to activate DRG neurons.
Alleviating chronic pain is challenging, due to lack of drugs that effectively inhibit nociceptors without off-target effects on motor or central neurons. Dorsal root ganglia (DRG) contain nociceptive and non-nociceptive neurons. Drug screening on cultured DRG neurons, rather than cell lines, allows for the identification of drugs most potent on nociceptors with no effects on non-nociceptors (as a proxy for unwanted side effects on central nervous system and motor neurons). However, screening using DRG neurons is currently a low-throughput process, and there is a need for assays to speed this process for analgesic drug discovery. We previously showed that veratridine elicits distinct response profiles in sensory neurons. Here, we show evidence that a veratridine-based calcium assay allows for an unbiased and efficient assessment of a drug effect on nociceptors (targeted neurons) and non-nociceptors (nontargeted neurons). We confirmed the link between the oscillatory profile and nociceptors, and the slow-decay profile and non-nociceptors using 3 transgenic mouse lines of known pain phenotypes. We used the assay to show that blockers for Nav1.7 and Nav1.8 channels, which are validated targets for analgesics, affect non-nociceptors at concentrations needed to effectively inhibit nociceptors. However, a combination of low doses of both blockers had an additive effect on nociceptors without a significant effect on non-nociceptors, indicating that the assay can also be used to screen for combinations of existing or novel drugs for the greatest selective inhibition of nociceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.