The study examines the impact of financial risk, convenience risk, non-delivery risk; return policy risk and product risk on online consumer behavior of Malaysian consumers. The research employed a self-administered survey to collect empirical data from 245 Malaysian online shoppers by using convenience sampling. Cronbach alpha was calculated to confirm the reliability of the data and then normality was assessed. Confirmatory Factor Analysis was then conducted to test the model using the goodness-of-fit tests. And finally, structural equation modeling is used to test the hypotheses and draw conclusions. IBM SPSS AMOS version 22.0 was utilized for data analysis. The research indicates that product risk, convenience risk, and return policy risk have a significant and positive impact on online shopping behavior. Financial risk is found to have insignificant and negative effects on consumer behavior. In addition, the non-delivery risk is found to have a significant and negative impact on online shopping behavior. The findings provide a useful model for measuring and managing perceived risk in online shopping which may result in an increase in participation of Malaysian consumers and reduce their cognitive deficiencies in the e-commerce environment. Several managerial implications are discussed along with the scope for future research.
Purpose: This research investigates the impact of technology adoption on organisation productivity. The framework has three independent variables viz. technological change, information technology (IT) infrastructure, and IT knowledge management and one dependent variable as organisational productivity. Research design, data and methodology: An explanatory research design with a quantitative research method was employed, and data was collected using a self-administered questionnaire using online as well as an offline survey. The sample consisted of 300 IT managers and senior-level executives (production as well as service team) in leading IT companies in Malaysia selected using snowball sampling. Normality and reliability assessment was performed in the first stage utilising SPSS 22, and Confirmatory Factory Analysis (CFA) was performed with maximum likelihood estimation to assess the internal consistency, convergent validity, and discriminant validity. Finally, Structural Equation Model (SEM) and path analysis are conducted using AMOS 22. Results: The research findings demonstrated that technological change and IT infrastructure positively and significantly impact the organisation's productivity while IT knowledge management has significant but negative impact on organizational productivity of IT companies in Malaysia. Conclusion: The research concludes that all three factors plays important role in deciding organizational producvity. Recommendations, implications, limitations and future research avenues are discussed.
What will be the most important technology to change higher education? In our view, it is not big data, the social web, MOOCs, virtual reality, or
Based on the empirical research, this chapter investigated the impact of big data-based techniques typically used in big-data driven E-commerce such as information search, recommendation system, dynamic pricing, and personalisation on the online repurchase intention in Malaysia. This study also investigated the mediating effect on customer satisfaction. Therefore this study utilised the quantitative research method with an explanatory study to predict the link between dependent and independent variables. Additionally, the snowball sample method was used to select a sample size of 318 working adults in Klang Valley. Next, a self-administered online questionnaire was used to collect the necessary data. The IB, SPSS 22 software was then used to assess the reliability and normality of the variables at the first stage. Next, the Confirmatory Factor Analysis and Structural Equation Modelling were examined via IBM SSS AMOS 22. The findings showed that the big data analytic factors like information search, recommendation system, dynamic pricing, and personalisation had a positive significant impact on customers' repurchase intention. Nonetheless, the mediation effect of customer satisfaction on information search, recommendation system, and dynamic pricing did not encourage the repurchase intention. Then, this chapter discussed the managerial implication, limitations, and future research scope. Finally, this study suggested strategies to enhance online repurchase intention via application of big-data analytics in E-commerce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.