Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by application components, network conditions, computational load, amount of data transfer, and delays in communication. We formulate the cost function involving all aforementioned factors, obtain the cost for all possible combinations of component offloading policies, select the optimal policies over an exhaustive dataset, and train a deep learning network as an alternative for the extensive computations involved. Simulation results show that our proposed model is promising in terms of accuracy and energy consumption of UEs. INDEX TERMS Computational offloading, deep learning, energy efficient offloading, mobile edge computing, user equipment.
Mobile Edge Computing (MEC) has emerged as an alternative to cloud computing to meet the latency and Quality-of-Service (QoS) requirements of mobile devices. In this paper, we address the problem of server resource allocation in MEC. Due to the dynamic load conditions on MEC servers, their resources need to be used intelligently to meet the QoS requirements of the users and to minimize server energy consumption. We present a novel resource allocation algorithm, called Power Migration Expand (PowMigExpand). Our algorithm assigns user requests to the optimal server and allocates optimal amount of resources to User Equipment (UE) based on our comprehensive utility function. PowMigExpand also migrates UE requests to new servers, when needed due to the mobility of users. We also present a low cost Energy Efficient Smart Allocator (EESA) algorithm that uses deep learning for energy efficient allocation of requests to optimal servers. The proposed algorithms consider varying load of incoming requests and their heterogeneous nature, energy efficient activation of servers, and Virtual Machine (VM) migration for smart resource allocation and, thus, is the first comprehensive approach to address the complex and multidimensional resource allocation problem using deep learning. We compare our proposed algorithms with other resource allocation approaches and show that our approach can handle the dynamic load conditions better. The proposed algorithms improve the service rate and the overall utility with minimum energy consumption. On average, it reduces 26% energy consumption of MESs and improves the service rate by 23%, compared with other algorithms. We also get more than 70% accuracy for EESA in allocating the resources of multiple servers to multiple users.INDEX TERMS Mobile edge computing, resource allocation, computational offloading, deep learning, energy efficient.
In mobile edge computing (MEC), partial computational offloading can be intelligently investigated to reduce the energy consumption and service delay of user equipment (UE) by dividing a single task into different components. Some of the components execute locally on the UE while the remaining are offloaded to a mobile edge server (MES). In this paper, we investigate the partial offloading technique in MEC using a supervised deep learning approach. The proposed technique, comprehensive and energy efficient deep learning-based offloading technique (CEDOT), intelligently selects the partial offloading policy and also the size of each component of a task to reduce the service delay and energy consumption of UEs. We use deep learning to find, simultaneously, the best partitioning of a single task with the best offloading policy. The deep neural network (DNN) is trained through a comprehensive dataset, generated from our mathematical model, which reduces the time delay and energy consumption of the overall process. Due to the complexity and computation of the mathematical model in the algorithm being high, due to trained DNN the complexity and computation are minimized in the proposed work. We propose a comprehensive cost function, which depends on various delays, energy consumption, radio resources, and computation resources. Furthermore, the cost function also depends on energy consumption and delay due to the task-division-process in partial offloading. None of the literature work considers the partitioning along with the computational offloading policy, and hence, the time and energy consumption due to task-division-process are ignored in the cost function. The proposed work considers all the important parameters in the cost function and generates a comprehensive training dataset with high computation and complexity. Once we get the training dataset, then the complexity is minimized through trained DNN which gives faster decision making with low energy consumptions. Simulation results demonstrate the superior performance of the proposed technique with high accuracy of the DNN in deciding offloading policy and partitioning of a task with minimum delay and energy consumption for UE. More than 70% accuracy of the trained DNN is achieved through a comprehensive training dataset. The simulation results also show the constant accuracy of the DNN when the UEs are moving which means the decision making of the offloading policy and partitioning are not affected by the mobility of UEs.
In mobile edge computing (MEC), one of the important challenges is how much resources of which mobile edge server (MES) should be allocated to which user equipment (UE). The existing resource allocation schemes only consider CPU as the requested resource and assume utility for MESs as either a random variable or dependent on the requested CPU only. This paper presents a novel comprehensive utility function for resource allocation in MEC. The utility function considers the heterogeneous nature of applications that a UE offloads to MES. The proposed utility function considers all important parameters, including CPU, RAM, hard disk space, required time, and distance, to calculate a more realistic utility value for MESs. Moreover, we improve upon some general algorithms, used for resource allocation in MEC and cloud computing, by considering our proposed utility function. We name the improved versions of these resource allocation schemes as comprehensive resource allocation schemes. The UE requests are modeled to represent the amount of resources requested by the UE as well as the time for which the UE has requested these resources. The utility function depends upon the UE requests and the distance between UEs and MES, and serves as a realistic means of comparison between different types of UE requests. Choosing (or selecting) an optimal MES with the optimal amount of resources to be allocated to each UE request is a challenging task. We show that MES resource allocation is sub-optimal if CPU is the only resource considered. By taking into account the other resources, i.e., RAM, disk space, request time, and distance in the utility function, we demonstrate improvement in the resource allocation algorithms in terms of service rate, utility, and MES energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.