Addressing crime detection, cyber security and multi-modal gaze estimation in biometric information recognition is challenging. Thus, trained artificial intelligence (AI) algorithms such as Support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) have been proposed to recognize distinct and discriminant features of biometric information (intrinsic hand features and demographic cues) with good classification accuracy. Unfortunately, due to nonlinearity in distinct and discriminant features of biometric information, accuracy of SVM and ANFIS is reduced. As a result, optimized AI algorithms ((ANFIS) with subtractive clustering (ANFIS-SC) and SVM with error correction output code (SVM-ECOC)) have shown to be effective for biometric information recognition. In this paper, we compare the performance of the ANFIS-SC and SVM-ECOC algorithms in their effectiveness at learning essential characteristics of intrinsic hand features and demographic cues based on Pearson correlation coefficient (PCC) feature selection. Furthermore, the accuracy of these algorithms are presented, and their recognition performances are evaluated by root mean squared error (RMSE), mean absolute percentage error (MAPE), scatter index (SI), mean absolute deviation (MAD), coefficient of determination (R 2 ), Akaike's Information Criterion (AICc) and Nash-Sutcliffe model efficiency index (NSE). Evaluation results show that both SVM-ECOC and ANFIS-SC algorithms are suitable for accurately recognizing soft biometric information on basis of intrinsic hand measurements and demographic cues. Moreover, comparison results demonstrated that ANFIS-SC algorithms can provide better recognition accuracy, with RMSE, AICc, MAPE, R 2 and NSE values of ≤ 3.85, 2.39E+02, 0.18%, ≥ 0.99 and ≥ 99, respectively.
Recognition of lying is a more complex cognitive process than truth-telling because of the presence of involuntary cognitive cues that are useful to lie recognition. Researchers have proposed different approaches in the literature to solve the problem of lie recognition from either handcrafted and/or automatic lie features during court trials and police interrogations. Unfortunately, due to the cognitive complexity and the lack of involuntary cues related to lying features, the performances of these approaches suffer and their generalization ability is limited. To improve performance, this study proposed state transition patterns based on hands, body motions, and eye blinking features from real-life court trial videos. Each video frame is represented according to a computed threshold value among neighboring pixels to extract spatial–temporal state transition patterns (STSTP) of the hand and face poses as involuntary cues using fully connected convolution neural network layers optimized with the weights of ResNet-152 learning. In addition, this study computed an eye aspect ratio model to obtain eye blinking features. These features were fused together as a single multi-modal STSTP feature model. The model was built using the enhanced calculated weight of bidirectional long short-term memory. The proposed approach was evaluated by comparing its performance with current state-of-the-art methods. It was found that the proposed approach improves the performance of detecting lies.
People find it challenging to control smart systems with complex gaze gestures due to the vulnerability of eye saccades. Instead, the existing works achieved good recognition accuracy of simple gaze gestures because of sufficient eye gaze points but simple gaze gestures have limited applications compared to complex gaze gestures. Complex gaze gestures need a composition of multiple subunits of eye fixation to contain a sequence of gaze points that are clustered and rotated with an underlying complex head orientation relationship. This paper proposes a new set of eye gaze points and head orientation angles as new sequences to recognize complex gaze gestures. Eye gaze points and head orientation angles have a powerful influence on gaze gesture formation. The new sequence was obtained by aligning clustered gaze points and head orientation angles with a simple moving average (SMA) to denoise and interpolate the gap between successive eye fixations. The aligned new sequence of complex gaze gestures was utilized to train sequential machine learning (ML) algorithms. To evaluate the performance of the proposed method, we recruited and recorded the eye gaze and head orientation features of ten participants using an eye tracker. The results show that Boosted Hidden Markov Models (HMM) using Random Subspace methods achieved the best accuracies of 94.72% and 98.1% for complex, and simple gestures respectively, which outperformed the conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.