This is the first time that the method for the investigation of unpredictable solutions of differential equations has been extended to unpredictable oscillations of neural networks with a generalized piecewise constant argument, which is delayed and advanced. The existence and exponential stability of the unique unpredictable oscillation are proven. According to the theory, the presence of unpredictable oscillations is strong evidence for Poincaré chaos. Consequently, the paper is a contribution to chaos applications in neuroscience. The model is inspired by chaotic time-varying stimuli, which allow studying the distribution of chaotic signals in neural networks. Unpredictable inputs create an excitation wave of neurons that transmit chaotic signals. The technique of analysis includes the ideas used for differential equations with a piecewise constant argument. The results are illustrated by examples and simulations. They are carried out in MATLAB Simulink to demonstrate the simplicity of the diagrammatic approaches.
We consider a new type of oscillations of discontinuous unpredictable solutions for linear impulsive nonhomogeneous systems. The models under investigation are with unpredictable perturbations. The definition of a piecewise continuous unpredictable function is provided. The moments of impulses constitute a newly determined unpredictable discrete set. Theoretical results on the existence, uniqueness, and stability of discontinuous unpredictable solutions for linear impulsive differential equations are provided. We benefit from the B-topology in the space of discontinuous functions on the purpose of proving the presence of unpredictable solutions. For constructive definitions of unpredictable components in examples, randomly determined unpredictable sequences are newly utilized. Namely, the construction of a discontinuous unpredictable function is based on an unpredictable sequence determined by a discrete random process, and the set of discontinuity moments is realized by the logistic map. Examples with numerical simulations are presented to illustrate the theoretical results.
In this paper, unpredictable oscillations in Hopfield-type neural networks is under investigation. The motion strongly relates to Poincaré chaos. Thus, the importance of the dynamics is indisputable for those problems of artificial intelligence, brain activity and robotics, which rely on chaos. Sufficient conditions for the existence and uniqueness of exponentially stable unpredictable solutions are determined. The oscillations continue the line of periodic and almost periodic motions, which already are verified as effective instruments of analysis and applications for image recognition, information processing and other areas of neuroscience. The concept of strongly unpredictable oscillations is a significant novelty of the present research, since the presence of chaos in each coordinate of the space state provides new opportunities in applications. Additionally to the theoretical analysis, we have provided strong simulation arguments, considering that all of the assumed conditions are fulfilled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.