Abstract. This study was focusing on the utilization of Palm Oil Fuel Ash (POFA) and the effect of fine sand to develop the strength of the mortar. The flexural and compressive strength of fine grained mortar (FGM) with the addition of POFA and the sand usage with a size less than 1 mm were investigated. Then, the optimum percentage of POFA as a replacement material for cement was determined. Cement was partially replaced with POFA at various percentage of 0 % to 40 % by weight of cementitious materials with three (3) samples for each percentage. The laboratory test was conducted for this study are divided into two which are properties of samples (X-ray fluorescence and particle size analyzer), and hardened mortar (compressive and flexural strength). The prism specimens size are 40 mm x 40 mm x 160 mm and were tested at the age of 7 and 28 days according to BS EN 196-1:2005: Method of Testing Cement. The results showed that the highest flexural and compression strength is at 10 % due to a factor which is the effect of POFA and fine sand produce a strong bond between the particles with the longer curing time, that is after 14 days. This is indicated that an additional of 10 % POFA in FGM is the optimal percentage of POFA as a replacement for cement.
Abstract. This paper focus on the effect of alkaline treatment by using sodium hydroxide on the tensile properties of paddy straw fibers strengthened with polypropylene resin. Two types of paddy straw fibers were used which are MR219 and MR220. The paddy straw fibers were prepared in two conditions as untreated and treated with sodium hydroxide (NaOH) at 5% for 24 hours and then dried at 80°C for another 24 hours. For sampling process, these fibers were weighted according to 5% and 10% mass fraction. A total of 16 samples were prepared for this study based on ASTM D638 and tensile test was conducted by using ASTM D5083. The result showed that paddy straw fiber treated with NaOH had gain higher ultimate tensile strength compared to untreated paddy straw fiber where the highest ultimate tensile strength for the fibers is recorded at 10% of MR219 fiber with value of 2.0230 kN and 3.677 mm displacement were recorded. The highest strain were recorded by the same fibers with an average value of 5.253% and obtained the Young's modulus up to 1110 MPa. However, the Young's modulus which has been obtained by the same fibers was decreased with the percentage difference of 40%.
Energy was the important sources to human life. Due to increases energy demand in daily life, the energy consumption was increase day by day because of the heat load from solar radiation and heat produced by people. Toward sustainable development, this research was carried out to develop a lightweight concrete (LWC) block with various cooling agent such as glycerine, propylene glycol, coconut shell and gypsum powder. Six lightweight concrete (LWC) block with the size 250mm (L) × 250mm (W) × 100mm (T) were tested for thermal conductivity value. From the experimental result, it shows that lightweight concrete (LCW) block with various cooling agent obtained thermal conductivity value of 0.17W/mK - 0.36W/mK lower than thermal conductivity value for normal lightweight concrete (0.8W/mK) depending on concrete density. The lightweight concrete (LCW) block with cooling agent having low thermal conductivity value will reduce energy consumption in building.
The implementation of sustainable construction and green building becomes the main attention of construction industries in Malaysia as it has been introduced by the government in the Construction Industry Transformation Programme (2016-2020). Therefore, this study focuses on the development of sustainable concrete bricks containing Expanded Polystyrene (EPS) and Palm Oil Fuel Ash (POFA) as sand and cement substitute materials. The percentage of replacement is 20%, 30%, 40% and 50% for EPS and 5%, 10%, 15%, 20% and 25% for POFA. There are 30 different mix designs of brick have been produced and their properties have been identified. Hardened brick density, compressive strength, water absorption and initial rate of absorption are the brick properties identified in this study. Based on the experimental results, it was found that the hardened brick density and compressive strength of the brick decreased as the replacement percentage increased. On the other hand, the water absorption and initial rate of absorption of the brick decreased as the percentage of EPS increased and increased as the percentage of POFA increased. Based on the findings, it shows that EPS and POFA has significantly contributes to the reduction of brick density. Next, for the compressive strength all the bricks have satisfied the minimum strength requirement of non-load bearing brick. Finally, for water absorption and initial rate of absorption, it has been found that majority of the bricks have an acceptable value based on standard requirements for brick. This can be concluded that EPS and POFA could be potential substitute materials for the manufacture of sustainable bricks.
Abstract. The construction technology now has become more and more advanced allowing the development of new technologies or material to replace the previous one and also solved some of the troubles confronted by construction experts. The Glass Fibre Reinforced Polymer (GFRP) composite is an alternative to replace the current usage of steel as it is rust proof and stronger in terms of stiffness compared to steel. Furthermore, GFRP bars have a high strength-to-weight ratio, making them attractive as reinforcement for concrete structures. However, the tensile behavior of GFRP bars is characterized by a linear elastic stress-strain relationship up to failure and, therefore, concrete elements reinforced with GFRP reinforcement exhibit brittle failure without warning. Design codes encourage over-reinforced GFRP design since it is more progressive and leads to a less catastrophic failure with a higher degree of deformability. Moreover, because of GFRP low modulus of elasticity, GFRP reinforced concrete members exhibit larger deflections and wider cracks width than steel reinforced concrete. This aims of this paper is to developed 2D Finite Element (FE) models that can accurately simulate the respond on an improvement in the deflection of GFRP reinforced concrete beam externally strengthened with CFRP plates on the tension part of beam. The prediction of flexural response according to RCCSA software was also discussed. It was observed that the predicted FE results are given similar result with the experimental measured test data. Base on this good agreement, a parametric study was the performed using the validation FE model to investigate the effect of flexural reinforcement ratio and arrangement of the beams strengthened with different regions of CFRP plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.