Continuous growth in software, hardware and internet technology has enabled the growth of internet-based sensor tools that provide physical world observations and data measurement. The Internet of Things(IoT) is made up of billions of smart things that communicate, extending the boundaries of physical and virtual entities of the world further. These intelligent things produce or collect massive data daily with a broad range of applications and fields. Analytics on these huge data is a critical tool for discovering new knowledge, foreseeing future knowledge and making control decisions that make IoT a worthy business paradigm and enhancing technology. Deep learning has been used in a variety of projects involving IoT and mobile apps, with encouraging early results. With its data-driven, anomaly-based methodology and capacity to detect developing, unexpected attacks, deep learning may deliver cutting-edge solutions for IoT intrusion detection. In this paper, the increased amount of information gathered or produced is being used to further develop intelligence and application capabilities through Deep Learning (DL) techniques. Many researchers have been attracted to the various fields of IoT, and both DL and IoT techniques have been approached. Different studies suggested DL as a feasible solution to manage data produced by IoT because it was intended to handle a variety of data in large amounts, requiring almost real-time processing. We start by discussing the introduction to IoT, data generation and data processing. We also discuss the various DL approaches with their procedures. We surveyed and summarized major reporting efforts for DL in the IoT region on various datasets. The features, application and challenges that DL uses to empower IoT applications, which are also discussed in this promising field, can motivate and inspire further developments.
In this paper, we investigate ways that social media platforms can enhance the responsiveness of branches of local government that deal primarily in performing tasks on the behalf of citizens or interacting with them. More specifically, we utilize the Twitter platform (on the web and capable smartphones) to provide a two way communications channel between a local government system and citizens. Through such social media driven communication, citizens can submit requests for work to be completed, which could then be carried out by the local government. The goal of such a system is to enable the local government to increase responsiveness and gain efficiency in its manpower usage through optimized route planning and intelligent work dispatch.
A brain tumor is a lethal neurological disease that affects the average performance of the brain and can be fatal. In India, around 15 million cases are diagnosed yearly. To mitigate the seriousness of the tumor it is essential to diagnose at the beginning. Notwithstanding, the manual evaluation process utilizing Magnetic Resonance Imaging (MRI) causes a few worries, remarkably inefficient and inaccurate brain tumor diagnoses. Similarly, the examination process of brain tumors is intricate as they display high unbalance in nature like shape, size, appearance, and location. Therefore, a precise and expeditious prognosis of brain tumors is essential for implementing the of an implicit treatment. Several computer models adapted to diagnose the tumor, but the accuracy of the model needs to be tested. Considering all the above mentioned things, this work aims to identify the best classification system by considering the prediction accuracy out of Alex-Net, ResNet 50, and Inception V3. Data augmentation is performed on the database and fed into the three convolutions neural network (CNN) models. A comparison line is drawn between the three models based on accuracy and performance. An accuracy of 96.2% is obtained for AlexNet with augmentation and performed better than ResNet 50 and Inception V3 for the 120th epoch. With the suggested model with higher accuracy, it is highly reliable if brain tumors are diagnosed with available datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.