Social insects frequently engage in oral fluid exchange – trophallaxis – between adults, and between adults and larvae. Although trophallaxis is widely considered a food-sharing mechanism, we hypothesized that endogenous components of this fluid might underlie a novel means of chemical communication between colony members. Through protein and small-molecule mass spectrometry and RNA sequencing, we found that trophallactic fluid in the ant Camponotus floridanus contains a set of specific digestion- and non-digestion related proteins, as well as hydrocarbons, microRNAs, and a key developmental regulator, juvenile hormone. When C. floridanus workers’ food was supplemented with this hormone, the larvae they reared via trophallaxis were twice as likely to complete metamorphosis and became larger workers. Comparison of trophallactic fluid proteins across social insect species revealed that many are regulators of growth, development and behavioral maturation. These results suggest that trophallaxis plays previously unsuspected roles in communication and enables communal control of colony phenotypes.DOI:
http://dx.doi.org/10.7554/eLife.20375.001
Viral RNA is a common activator of antiviral responses. In this review, we dissect the mechanism of viral RNA recognition by the small interfering RNA pathway in Drosophila melanogaster. This antiviral response in fruit flies can help understand general principles of nucleic acid recognition.
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we describe four soybean genes, GmbZIP62, GmbZIP105, GmbZIPE1, and GmbZIPE2, which encode transcription factors containing a basic leucine zipper (bZIP) domain from two divergent classes, and that are responsive to P. pachyrhizi infection. Molecular phylogenetic analyses demonstrated that these genes encode proteins similar to bZIP factors responsive to pathogens. Yeast transactivation assays showed that only GmbZIP62 has strong transactivation activity in yeast. In addition, three of the bZIP transcription factors analyzed were also differentially expressed by plant defense hormones, and all were differentially expressed by fungal attack, indicating that these proteins might participate in response to ASR infection. The results suggested that these bZIP proteins are part of the plant defense response to P. pachyrhizi infection, by regulating the gene expression related to ASR infection responses. These bZIP genes are potential targets to obtain new soybean genotypes resistant to ASR.
The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system.Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the cells' immune response and restrict virus growth, suggesting that the IFNAR regulatory function of ISG15 is also antiviral. Our results suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication, adding another layer of complexity in the virus/host interaction interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.