We explore different methods of solving systems of stochastic differential equations by first implementing the Euler–Maruyama and Milstein methods with a Monte Carlo simulation on a CPU. The performance of the methods is significantly improved through the recently developed antithetic multilevel Monte Carlo estimator, which yields a computation complexity of
{\mathcal{O}(\epsilon^{-2})}
root-mean-square error and does so without the approximation of Lévy areas. Further improvements in performance are gained by moving the algorithms to a GPU - first on a single device and then on a multi-GPU cluster. Our GPU implementation of the antithetic multilevel Monte Carlo displays a major speedup in computation when compared with many commonly used approaches in the literature. While our work is focused on the simulation of the stochastic volatility and interest rate model, it is easily extendable to other stochastic systems, and it is of particular interest to those with non-diagonal, non-commutative noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.