We consider split-step Milstein methods for the solution of stiff stochastic differential equations with an emphasis on systems driven by multi-channel noise. We show their strong order of convergence and investigate mean-square stability properties for different noise and drift structures. The stability matrices are established in a form convenient for analyzing their impact arising from different deterministic drift integrators. Numerical examples are provided to illustrate the effectiveness and reliability of these methods.
We explore different methods of solving systems of stochastic differential equations by first implementing the Euler–Maruyama and Milstein methods with a Monte Carlo simulation on a CPU. The performance of the methods is significantly improved through the recently developed antithetic multilevel Monte Carlo estimator, which yields a computation complexity of
{\mathcal{O}(\epsilon^{-2})}
root-mean-square error and does so without the approximation of Lévy areas. Further improvements in performance are gained by moving the algorithms to a GPU - first on a single device and then on a multi-GPU cluster. Our GPU implementation of the antithetic multilevel Monte Carlo displays a major speedup in computation when compared with many commonly used approaches in the literature. While our work is focused on the simulation of the stochastic volatility and interest rate model, it is easily extendable to other stochastic systems, and it is of particular interest to those with non-diagonal, non-commutative noise.
Tau-leaping is a family of algorithms for the approximate simulation of the discrete state continuous time Markov chains. A motivation for the development of such methods can be found, for instance, in the fields of chemical kinetics and systems biology. It is known that the dynamical behavior of biochemical systems is often intrinsically stiff representing a serious challenge for their numerical approximation. The naive extension of stiff deterministic solvers to stochastic integration often yields numerical solutions with either impractically large relaxation times or incorrectly resolved covariance. In this paper, we propose a splitting heuristic which helps to resolve some of these issues. The proposed integrator contains a number of unknown parameters which are estimated for each particular problem from the moment equations of the corresponding linearized system. We show that this method is able to reproduce the exact mean and variance of the linear scalar test equation and demonstrates a good accuracy for the arbitrarily stiff systems at least in the linear case. The numerical examples for both linear and nonlinear systems are also provided, and the obtained results confirm the efficiency of the considered splitting approach.
In this effort, we propose a new deep architecture utilizing residual blocks inspired by implicit discretization schemes. As opposed to the standard feed-forward networks, the outputs of the proposed implicit residual blocks are defined as the fixed points of the appropriately chosen nonlinear transformations. We show that this choice leads to the improved stability of both forward and backward propagations, has a favorable impact on the generalization power, and allows for control the robustness of the network with only a few hyperparameters. In addition, the proposed reformulation of ResNet does not introduce new parameters and can potentially lead to a reduction in the number of required layers due to improved forward stability. Finally, we derive the memory-efficient training algorithm, propose a stochastic regularization technique, and provide numerical results in support of our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.